Comment on page
Common Workarounds
As explained in the Basics of FHE, the challenge for developers is to adapt their code to fit FHE constraints. In this document we have collected some common examples to illustrate the kind of optimization one can do to get better performance.
All code snippets provided here are temporary workarounds. In future version of Concrete, some functions described here could be directly available in a more generic and efficient form. These code snippets are coming from support answers in our community forum
In this first example, we compute a minimum by creating a difference between the two numbers
y
and x
and conditionally remove this diff from y
to either get x
if y>x
or y
if x>y
:import numpy as np
from concrete import fhe
@fhe.compiler({"x": "encrypted", "y": "encrypted"})
def min_two(x, y):
diff = y - x
min_x_y = y - np.maximum(y - x, 0)
return min_x_y
inputset = [tuple(np.random.randint(0, 16, size=2)) for _ in range(50)]
circuit = min_two.compile(inputset)
x, y = np.random.randint(0, 16, size=2)
assert circuit.encrypt_run_decrypt(x, y) == min(x, y)
The companion example of above with the maximum value of two integers instead of the minimum:
import numpy as np
from concrete import fhe
@fhe.compiler({"x": "encrypted", "y": "encrypted"})
def max_two(x, y):
diff = y - x
max_x_y = y - np.minimum(y - x, 0)
return max_x_y
inputset = [tuple(np.random.randint(0, 16, size=2)) for _ in range(50)]
circuit = max_two.compile(inputset)
x, y = np.random.randint(0, 16, size=2)
assert circuit.encrypt_run_decrypt(x, y) == max(x, y)
And an extension for more than two values:
import numpy as np
from concrete import fhe
@fhe.compiler({"args": "encrypted"})
def fhe_min(args):
remaining = list(args)
while len(remaining) > 1:
a = remaining.pop()
b = remaining.pop()
min_a_b = b - np.maximum(b - a, 0)
remaining.insert(0, min_a_b)
return remaining[0]
inputset = [np.random.randint(0, 16, size=5) for _ in range(50)]
circuit = fhe_min.compile(inputset)
x1, x2, x3, x4, x5 = np.random.randint(0, 16, size=5)
assert circuit.encrypt_run_decrypt([x1, x2, x3, x4, x5]) == min(x1, x2, x3, x4, x5)
This example show how to deal with an array and an encrypted index. It will create a "selection" array filled with
0
except for the requested index that will be 1
, and sum the products of all array values by this selection array:import numpy as np
from concrete import fhe
@fhe.compiler({"array": "encrypted", "index": "encrypted"})
def indexed_value(array, index):
all_indices = np.arange(array.size)
index_selection = index == all_indices
selection_and_zeros = array * index_selection
selection = np.sum(selection_and_zeros)
return selection
inputset = [(np.random.randint(0, 16, size=5), np.random.randint(0, 5)) for _ in range(50)]
circuit = indexed_value.compile(inputset)
array = np.random.randint(0, 16, size=5)
index = np.random.randint(0, 5)
assert circuit.encrypt_run_decrypt(array, index) == array[index]
This example filters an encrypted array with an encrypted condition, here a
greater than
with an encrypted value. It packs all values with a selection bit, resulting from the comparison that allow the unpacking of only the filtered values:import numpy as np
from concrete import fhe
@fhe.compiler({"numbers": "encrypted", "threshold": "encrypted"})
def filtering(numbers, threshold):
is_greater = numbers > threshold
shifted_numbers = numbers * 2 # open space for a single bit at the end
combined_numbers_and_is_greater = shifted_numbers + is_greater # put is_greater to that bit
def extract(combination):
is_greater = (combination % 2) == 1 # extract is_greater back from packing
if_true = combination // 2 # if is greater is true, we unpack the number and use it
if_false = 0 # otherwise we set the element to zero
return np.where(is_greater, if_true, if_false) # and apply the operation
return fhe.univariate(extract)(combined_numbers_and_is_greater)
inputset = [(np.random.randint(0, 16, size=5), np.random.randint(0, 16)) for _ in range(50)]
circuit = filtering.compile(inputset)
numbers = np.random.randint(0, 16, size=5)
threshold = np.random.randint(0, 16)
assert np.array_equal(circuit.encrypt_run_decrypt(numbers, threshold), list(map(lambda x: x if x > threshold else 0, numbers)))
In this example of Matrix operation, we are introducing a key concept when using Concrete: trying to maximize the parallelization. Here instead of sequentially sum all values to create a mean value, we split the values in sub-groups, and do the mean of the sub-groups means:
import numpy as np
from concrete import fhe
def smallest_prime_divisor(n):
if n % 2 == 0:
return 2
for i in range(3, int(np.sqrt(n)) + 1):
if n % i == 0:
return i
return n
def mean_of_vector(x):
assert x.size != 0
if x.size == 1:
return x[0]
group_size = smallest_prime_divisor(x.size)
if x.size == group_size:
return np.round(np.sum(x) / x.size).astype(np.int64)
groups = []
for i in range(x.size // group_size):
start = i * group_size
end = start + group_size
groups.append(x[start:end])
mean_of_groups = []
for group in groups:
mean_of_groups.append(np.round(np.sum(group) / group_size).astype(np.int64))
return mean_of_vector(fhe.array(mean_of_groups))
@fhe.compiler(({"x": "encrypted"}))
def mean_of_matrix(x):
return mean_of_vector(x.flatten())
@fhe.compiler(({"x": "encrypted"}))
def mean_of_rows_of_matrix(x):
means = []
for i in range(x.shape[0]):
means.append(mean_of_vector(x[i]))
return fhe.array(means)
@fhe.compiler(({"x": "encrypted"}))
def mean_of_columns_of_matrix(x):
means = []
for i in range(x.shape[1]):
means.append(mean_of_vector(x[:, i]))
return fhe.array(means)
inputset = [np.random.randint(0, 16, size=(5,5)) for _ in range(50)]
matrix = np.random.randint(0, 16, size=(5, 5))
circuit = mean_of_matrix.compile(inputset)
assert circuit.encrypt_run_decrypt(matrix) == round(matrix.mean())
circuit = mean_of_rows_of_matrix.compile(inputset)
assert np.array_equal(circuit.encrypt_run_decrypt(matrix), [round(x) for x in matrix.mean(1)])
circuit = mean_of_columns_of_matrix.compile(inputset)
assert np.array_equal(circuit.encrypt_run_decrypt(matrix), [round(x) for x in matrix.mean(0)])
Last modified 1mo ago