Concrete
WebsiteLibrariesProducts & ServicesDevelopersSupport
2.10
2.10
  • Welcome
  • Get Started
    • What is Concrete?
    • Installation
    • Quick start
    • Quick overview
    • Terminology
  • Operations
    • Table Lookups basics
    • Non-linear operations
    • Other operations
      • Bit extraction
      • Common tips
      • Extensions
  • Compilation
    • Combining compiled functions
      • With composition
      • With modules
    • Key-related options for faster execution
      • Multi precision
      • Multi parameters
    • Compression
    • Reusing arguments
    • Parameter compatibility with restrictions
    • Common errors
  • Execution / Analysis
    • Simulation
    • Debugging and artifact
    • Performance
    • GPU acceleration
    • Other
      • Statistics
      • Progressbar
      • Formatting and drawing
  • Guides
    • Configure
    • Manage keys
    • Deploy
    • TFHE-rs Interoperability
      • Shared key
      • Serialization
    • Optimization
      • Improve parallelism
        • Dataflow parallelism
        • Tensorizing operations
      • Optimize table lookups
        • Reducing TLU
        • Implementation strategies
        • Round/truncating
        • Approximate mode
        • Bit extraction
      • Optimize cryptographic parameters
        • Error probability
        • Composition
  • Tutorials
    • See all tutorials
    • Part I: Concrete - FHE compiler
    • Part II: The Architecture of Concrete
  • References
    • API
    • Supported operations
  • Explanations
    • Compiler workflow
    • Advanced features
      • Table Lookups advanced
      • Rounding
      • Truncating
      • Floating points
      • Comparisons
      • Min/Max operations
      • Bitwise operations
      • Direct circuits
      • Tagging
    • Cryptography basics
    • Security
    • Frontend fusing
  • Developers
    • Contributing
      • Project layout
      • Compiler backend
        • Adding a new backend
      • Optimizer
      • MLIR FHE dialects
        • FHELinalg dialect
        • FHE dialect
        • TFHE dialect
        • Concrete dialect
        • Tracing dialect
        • Runtime dialect
        • SDFG dialect
      • Call FHE circuits from other languages
      • Benchmarking
      • Examples
      • Making a release
    • Release note
    • Feature request
    • Bug report
Powered by GitBook

Libraries

  • TFHE-rs
  • Concrete
  • Concrete ML
  • fhEVM

Developers

  • Blog
  • Documentation
  • Github
  • FHE resources

Company

  • About
  • Introduction to FHE
  • Media
  • Careers
On this page

Was this helpful?

Export as PDF
  1. Compilation

Reusing arguments

This document explains how to reuse encrypted arguments in applications where the same arguments are used repeatedly.

Encrypting data can be resource-intensive, especially when the same argument or set of arguments is used multiple times. In such cases, it’s inefficient to encrypt and transfer the arguments repeatedly. Instead, you can encrypt the arguments separately and reuse them as needed. By encrypting the arguments once and reusing them, you can optimize performance by reducing encryption time, memory usage, and network bandwidth.

Here is an example:

from concrete import fhe

@fhe.compiler({"x": "encrypted", "y": "encrypted"})
def add(x, y):
    return x + y

inputset = [(2, 3), (0, 0), (1, 6), (7, 7), (7, 1), (3, 2), (6, 1), (1, 7), (4, 5), (5, 4)]
circuit = add.compile(inputset)

sample_y = 4
_, encrypted_y = circuit.encrypt(None, sample_y)

for sample_x in range(3, 6):
    encrypted_x, _ = circuit.encrypt(sample_x, None)

    encrypted_result = circuit.run(encrypted_x, encrypted_y)
    result = circuit.decrypt(encrypted_result)

    assert result == sample_x + sample_y

Note when you use encrypt method:

  • If you have multiple arguments, the encrypt method would return a tuple.

  • If you specify None as one of the arguments, None is placed at the same location in the resulting tuple.

    • For example, circuit.encrypt(a, None, b, c, None) returns (encrypted_a, None, encrypted_b, encrypted_c, None).

  • Each value returned by encrypt can be stored and reused anytime.

The order of arguments must be consistent when encrypting and using them. Encrypting an x and using it as a y could result in undefined behavior.

PreviousCompressionNextParameter compatibility with restrictions

Last updated 1 month ago

Was this helpful?