Concrete
WebsiteLibrariesProducts & ServicesDevelopersSupport
2.10
2.10
  • Welcome
  • Get Started
    • What is Concrete?
    • Installation
    • Quick start
    • Quick overview
    • Terminology
  • Operations
    • Table Lookups basics
    • Non-linear operations
    • Other operations
      • Bit extraction
      • Common tips
      • Extensions
  • Compilation
    • Combining compiled functions
      • With composition
      • With modules
    • Key-related options for faster execution
      • Multi precision
      • Multi parameters
    • Compression
    • Reusing arguments
    • Parameter compatibility with restrictions
    • Common errors
  • Execution / Analysis
    • Simulation
    • Debugging and artifact
    • Performance
    • GPU acceleration
    • Other
      • Statistics
      • Progressbar
      • Formatting and drawing
  • Guides
    • Configure
    • Manage keys
    • Deploy
    • TFHE-rs Interoperability
      • Shared key
      • Serialization
    • Optimization
      • Improve parallelism
        • Dataflow parallelism
        • Tensorizing operations
      • Optimize table lookups
        • Reducing TLU
        • Implementation strategies
        • Round/truncating
        • Approximate mode
        • Bit extraction
      • Optimize cryptographic parameters
        • Error probability
        • Composition
  • Tutorials
    • See all tutorials
    • Part I: Concrete - FHE compiler
    • Part II: The Architecture of Concrete
  • References
    • API
    • Supported operations
  • Explanations
    • Compiler workflow
    • Advanced features
      • Table Lookups advanced
      • Rounding
      • Truncating
      • Floating points
      • Comparisons
      • Min/Max operations
      • Bitwise operations
      • Direct circuits
      • Tagging
    • Cryptography basics
    • Security
    • Frontend fusing
  • Developers
    • Contributing
      • Project layout
      • Compiler backend
        • Adding a new backend
      • Optimizer
      • MLIR FHE dialects
        • FHELinalg dialect
        • FHE dialect
        • TFHE dialect
        • Concrete dialect
        • Tracing dialect
        • Runtime dialect
        • SDFG dialect
      • Call FHE circuits from other languages
      • Benchmarking
      • Examples
      • Making a release
    • Release note
    • Feature request
    • Bug report
Powered by GitBook

Libraries

  • TFHE-rs
  • Concrete
  • Concrete ML
  • fhEVM

Developers

  • Blog
  • Documentation
  • Github
  • FHE resources

Company

  • About
  • Introduction to FHE
  • Media
  • Careers
On this page

Was this helpful?

Export as PDF
  1. Guides
  2. Optimization

Improve parallelism

PreviousOptimizationNextDataflow parallelism

Last updated 2 months ago

Was this helpful?

This guide introduces the different options for parallelism in Concrete and how to utilize them to improve the execution time of Concrete circuits.

Modern CPUs have multiple cores to perform computation and utilizing multiple cores is a great way to boost performance.

There are two kinds of parallelism in Concrete:

  • Loop parallelism to make tensor operations parallel, achieved by using

  • Dataflow parallelism to make independent operations parallel, achieved by using

Loop parallelism is enabled by default, as it's supported on all platforms. Dataflow parallelism however is only supported on Linux, hence not enabled by default.

OpenMP
HPX