Concrete
WebsiteLibrariesProducts & ServicesDevelopersSupport
2.10
2.10
  • Welcome
  • Get Started
    • What is Concrete?
    • Installation
    • Quick start
    • Quick overview
    • Terminology
  • Operations
    • Table Lookups basics
    • Non-linear operations
    • Other operations
      • Bit extraction
      • Common tips
      • Extensions
  • Compilation
    • Combining compiled functions
      • With composition
      • With modules
    • Key-related options for faster execution
      • Multi precision
      • Multi parameters
    • Compression
    • Reusing arguments
    • Parameter compatibility with restrictions
    • Common errors
  • Execution / Analysis
    • Simulation
    • Debugging and artifact
    • Performance
    • GPU acceleration
    • Other
      • Statistics
      • Progressbar
      • Formatting and drawing
  • Guides
    • Configure
    • Manage keys
    • Deploy
    • TFHE-rs Interoperability
      • Shared key
      • Serialization
    • Optimization
      • Improve parallelism
        • Dataflow parallelism
        • Tensorizing operations
      • Optimize table lookups
        • Reducing TLU
        • Implementation strategies
        • Round/truncating
        • Approximate mode
        • Bit extraction
      • Optimize cryptographic parameters
        • Error probability
        • Composition
  • Tutorials
    • See all tutorials
    • Part I: Concrete - FHE compiler
    • Part II: The Architecture of Concrete
  • References
    • API
    • Supported operations
  • Explanations
    • Compiler workflow
    • Advanced features
      • Table Lookups advanced
      • Rounding
      • Truncating
      • Floating points
      • Comparisons
      • Min/Max operations
      • Bitwise operations
      • Direct circuits
      • Tagging
    • Cryptography basics
    • Security
    • Frontend fusing
  • Developers
    • Contributing
      • Project layout
      • Compiler backend
        • Adding a new backend
      • Optimizer
      • MLIR FHE dialects
        • FHELinalg dialect
        • FHE dialect
        • TFHE dialect
        • Concrete dialect
        • Tracing dialect
        • Runtime dialect
        • SDFG dialect
      • Call FHE circuits from other languages
      • Benchmarking
      • Examples
      • Making a release
    • Release note
    • Feature request
    • Bug report
Powered by GitBook

Libraries

  • TFHE-rs
  • Concrete
  • Concrete ML
  • fhEVM

Developers

  • Blog
  • Documentation
  • Github
  • FHE resources

Company

  • About
  • Introduction to FHE
  • Media
  • Careers
On this page

Was this helpful?

Export as PDF
  1. Guides
  2. Optimization
  3. Optimize cryptographic parameters

Error probability

PreviousOptimize cryptographic parametersNextComposition

Last updated 1 month ago

Was this helpful?

This guide explains how setting p_error configuration option can affect the performance of Concrete circuits.

Adjusting table lookup error probability is discussed extensively in section. The idea is to sacrifice exactness to gain performance.

For example:

import numpy as np
from concrete import fhe

def f(x, y):
    return (x // 2) * (y // 3)

inputset = fhe.inputset(fhe.uint4, fhe.uint4)
for p_error in [(1 / 1_000_000), (1 / 100_000), (1 / 10_000), (1 / 1_000), (1 / 100)]:
    compiler = fhe.Compiler(f, {"x": "encrypted", "y": "encrypted"})
    circuit = compiler.compile(inputset, p_error=p_error)
    print(f"p_error of {p_error:.6f} -> {int(circuit.complexity):_} complexity")

This prints:

p_error of 0.000001 -> 294_773_524 complexity
p_error of 0.000010 -> 286_577_520 complexity
p_error of 0.000100 -> 275_887_080 complexity
p_error of 0.001000 -> 265_196_640 complexity
p_error of 0.010000 -> 184_144_972 complexity
Table lookup exactness