Progressbar

Big circuits can take a long time to execute, and waiting for execution to finish without having any indication of its progress can be frustrating. For this reason, progressbar feature is introduced:

import time

import matplotlib.pyplot as plt
import numpy as np
import randimage
from concrete import fhe

configuration = fhe.Configuration(
    enable_unsafe_features=True,
    use_insecure_key_cache=True,
    insecure_key_cache_location=".keys",

    # To enable displaying progressbar
    show_progress=True,
    # To enable showing tags in the progressbar (does not work in notebooks)
    progress_tag=True,
    # To give a title to the progressbar
    progress_title="Evaluation:",
)

@fhe.compiler({"image": "encrypted"})
def to_grayscale(image):
    with fhe.tag("scaling.r"):
        r = image[:, :, 0]
        r = (r * 0.30).astype(np.int64)

    with fhe.tag("scaling.g"):
        g = image[:, :, 1]
        g = (g * 0.59).astype(np.int64)

    with fhe.tag("scaling.b"):
        b = image[:, :, 2]
        b = (b * 0.11).astype(np.int64)

    with fhe.tag("combining.rgb"):
        gray = r + g + b
        
    with fhe.tag("creating.result"):
        gray = np.expand_dims(gray, axis=2)
        result = np.concatenate((gray, gray, gray), axis=2)
    
    return result

image_size = (16, 16)
image_data = (randimage.get_random_image(image_size) * 255).round().astype(np.int64)

print()

print(f"Compilation started @ {time.strftime('%H:%M:%S', time.localtime())}")
start = time.time()
inputset = [np.random.randint(0, 256, size=image_data.shape) for _ in range(100)]
circuit = to_grayscale.compile(inputset, configuration)
end = time.time()
print(f"(took {end - start:.3f} seconds)")

print()

print(f"Key generation started @ {time.strftime('%H:%M:%S', time.localtime())}")
start = time.time()
circuit.keygen()
end = time.time()
print(f"(took {end - start:.3f} seconds)")

print()

print(f"Evaluation started @ {time.strftime('%H:%M:%S', time.localtime())}")
start = time.time()
grayscale_image_data = circuit.encrypt_run_decrypt(image_data)
end = time.time()
print(f"(took {end - start:.3f} seconds)")

fig, axs = plt.subplots(1, 2)
axs = axs.flatten()

axs[0].set_title("Original")
axs[0].imshow(image_data)
axs[0].axis("off")

axs[1].set_title("Grayscale")
axs[1].imshow(grayscale_image_data)
axs[1].axis("off")

plt.show()

When you run this code, you will see a progressbar like:

Evaluation:  10% |█████.............................................|  10% (scaling.r)
^^^^^^^^^^^  ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ ^^^^^^^^^^^
Title        Progressbar                                                   Tag

And as the circuit progresses, this progressbar would fill:

Evaluation:  30% |███████████████...................................|  30% (scaling.g)
Evaluation:  50% |█████████████████████████.........................|  50% (scaling.b)

It is not a uniform progressbar. For example, when the progressbar shows 50%, this does not mean that half of the execution is performed in terms of seconds. Instead, it means that half of the nodes in the graph have been calculated. Since different node types can take a different amount of time, this should not be used to get an ETA.

Once the progressbar fills and execution completes, you will see the following figure:

Last updated