Concrete
WebsiteLibrariesProducts & ServicesDevelopersSupport
2.6
2.6
  • Welcome
  • Get Started
    • What is Concrete?
    • Installation
    • Quick start
    • Compatibility
    • Terminology
  • Core features
    • Overview
    • Table lookups
    • Bit extraction
    • Rounding
    • Truncating
    • Floating points
    • Comparisons
    • Min/Max operations
    • Bitwise operations
    • Common tips
    • Extensions
    • Tagging
  • Compilation
    • Composition
    • Compression
    • Reuse arguments
    • Multi precision
    • Multi parameters
    • Modules
    • Decorator
    • Direct circuits
  • Execution / Analysis
    • Simulation
    • Progressbar
    • Statistics
    • Formatting and drawing
    • Debug
  • Guides
    • Configure
    • Manage keys
    • Deploy
  • Tutorials
    • See all tutorials
    • Part I: Concrete - FHE compiler
    • Part II: The Architecture of Concrete
  • References
    • API
  • Explanations
    • Compiler workflow
    • Frontend fusing
    • Compiler backend
      • Adding a new backend
    • Optimizer
    • MLIR FHE dialects
      • FHELinalg dialect
      • FHE dialect
      • TFHE dialect
      • Concrete dialect
      • Tracing dialect
      • Runtime dialect
      • SDFG dialect
    • Security
    • Call FHE circuits from other languages
    • Project layout
  • Developers
    • Contributing
    • Release note
    • Feature request
    • Bug report
Powered by GitBook

Libraries

  • TFHE-rs
  • Concrete
  • Concrete ML
  • fhEVM

Developers

  • Blog
  • Documentation
  • Github
  • FHE resources

Company

  • About
  • Introduction to FHE
  • Media
  • Careers
On this page

Was this helpful?

Export as PDF
  1. Get Started

Terminology

Terminology

Some terms used throughout the project include:

  • computation graph: A data structure to represent a computation. This is basically a directed acyclic graph in which nodes are either inputs, constants, or operations on other nodes.

  • tracing: A technique that takes a Python function from the user and generates a corresponding computation graph.

  • bounds: Before computation graphs are converted to MLIR, we need to know which value should have which type (e.g., uint3 vs int5). We use inputsets for this purpose. We simulate the graph with the inputs in the inputset to remember the minimum and the maximum value for each node, which is what we call bounds, and use bounds to determine the appropriate type for each node.

  • circuit: The result of compilation. A circuit is made of the client and server components. It has methods for everything from printing to evaluation.

PreviousCompatibilityNextOverview

Last updated 1 year ago

Was this helpful?