Concrete
WebsiteLibrariesProducts & ServicesDevelopersSupport
2.6
2.6
  • Welcome
  • Get Started
    • What is Concrete?
    • Installation
    • Quick start
    • Compatibility
    • Terminology
  • Core features
    • Overview
    • Table lookups
    • Bit extraction
    • Rounding
    • Truncating
    • Floating points
    • Comparisons
    • Min/Max operations
    • Bitwise operations
    • Common tips
    • Extensions
    • Tagging
  • Compilation
    • Composition
    • Compression
    • Reuse arguments
    • Multi precision
    • Multi parameters
    • Modules
    • Decorator
    • Direct circuits
  • Execution / Analysis
    • Simulation
    • Progressbar
    • Statistics
    • Formatting and drawing
    • Debug
  • Guides
    • Configure
    • Manage keys
    • Deploy
  • Tutorials
    • See all tutorials
    • Part I: Concrete - FHE compiler
    • Part II: The Architecture of Concrete
  • References
    • API
  • Explanations
    • Compiler workflow
    • Frontend fusing
    • Compiler backend
      • Adding a new backend
    • Optimizer
    • MLIR FHE dialects
      • FHELinalg dialect
      • FHE dialect
      • TFHE dialect
      • Concrete dialect
      • Tracing dialect
      • Runtime dialect
      • SDFG dialect
    • Security
    • Call FHE circuits from other languages
    • Project layout
  • Developers
    • Contributing
    • Release note
    • Feature request
    • Bug report
Powered by GitBook

Libraries

  • TFHE-rs
  • Concrete
  • Concrete ML
  • fhEVM

Developers

  • Blog
  • Documentation
  • Github
  • FHE resources

Company

  • About
  • Introduction to FHE
  • Media
  • Careers
On this page

Was this helpful?

Export as PDF
  1. Core features

Tagging

When you have big circuits, keeping track of which node corresponds to which part of your code becomes difficult. A tagging system can simplify such situations:

def g(z):
    with fhe.tag("def"):
        a = 120 - z
        b = a // 4
    return b


def f(x):
    with fhe.tag("abc"):
        x = x * 2
        with fhe.tag("foo"):
            y = x + 42
        z = np.sqrt(y).astype(np.int64)

    return g(z + 3) * 2

When you compile f with inputset of range(10), you get the following graph:

 %0 = x                            # EncryptedScalar<uint4>        ∈ [0, 9]
 %1 = 2                            # ClearScalar<uint2>            ∈ [2, 2]            @ abc
 %2 = multiply(%0, %1)             # EncryptedScalar<uint5>        ∈ [0, 18]           @ abc
 %3 = 42                           # ClearScalar<uint6>            ∈ [42, 42]          @ abc.foo
 %4 = add(%2, %3)                  # EncryptedScalar<uint6>        ∈ [42, 60]          @ abc.foo
 %5 = subgraph(%4)                 # EncryptedScalar<uint3>        ∈ [6, 7]            @ abc
 %6 = 3                            # ClearScalar<uint2>            ∈ [3, 3]
 %7 = add(%5, %6)                  # EncryptedScalar<uint4>        ∈ [9, 10]
 %8 = 120                          # ClearScalar<uint7>            ∈ [120, 120]        @ def
 %9 = subtract(%8, %7)             # EncryptedScalar<uint7>        ∈ [110, 111]        @ def
%10 = 4                            # ClearScalar<uint3>            ∈ [4, 4]            @ def
%11 = floor_divide(%9, %10)        # EncryptedScalar<uint5>        ∈ [27, 27]          @ def
%12 = 2                            # ClearScalar<uint2>            ∈ [2, 2]
%13 = multiply(%11, %12)           # EncryptedScalar<uint6>        ∈ [54, 54]
return %13

Subgraphs:

    %5 = subgraph(%4):

        %0 = input                         # EncryptedScalar<uint2>          @ abc.foo
        %1 = sqrt(%0)                      # EncryptedScalar<float64>        @ abc
        %2 = astype(%1, dtype=int_)        # EncryptedScalar<uint1>          @ abc
        return %2

If you get an error, you'll see exactly where the error occurred (e.g., which layer of the neural network, if you tag layers).

In the future, we plan to use tags for additional features (e.g., to measure performance of tagged regions), so it's a good idea to start utilizing them for big circuits.

PreviousExtensionsNextComposition

Last updated 2 years ago

Was this helpful?