Concrete
WebsiteLibrariesProducts & ServicesDevelopersSupport
2.4
2.4
  • What is Concrete?
  • Getting Started
    • Basics of FHE programs
    • Installation
    • Quick Start
    • Compatibility
    • Exactness
    • Performance
    • Terminology and Structure
  • Tutorials
    • Decorator
    • Progressbar
    • Formatting
    • Tagging
    • Extensions
    • Comparisons
    • Bitwise Operations
    • Table Lookups
    • Rounding
    • Floating Points
    • Multi Precision
    • Multi Parameters
    • Simulation
    • Direct Circuits
    • Statistics
    • Common Workarounds
  • Application Tutorials
    • Key Value Database
    • SHA-256
  • How To
    • Configure
    • Manage Keys
    • Deploy
    • Reuse Arguments
    • Debug
    • Call FHE circuits from other languages
  • Explanations
    • Frontend fusing
    • Compilation
      • Automatic Crypto Parameters choice
      • MLIR FHE Dialects
        • FHELinalg Dialect
        • FHE Dialect
        • TFHE Dialect
        • Concrete Dialect
        • Tracing Dialect
        • Runtime Dialect
        • SDFG Dialect
    • Security curves
  • Developer
    • Contribute
    • Project layout
    • Compiler backend
      • Adding a new backend
Powered by GitBook

Libraries

  • TFHE-rs
  • Concrete
  • Concrete ML
  • fhEVM

Developers

  • Blog
  • Documentation
  • Github
  • FHE resources

Company

  • About
  • Introduction to FHE
  • Media
  • Careers
On this page

Was this helpful?

Export as PDF
  1. Tutorials

Statistics

Concrete analyzes all compiled circuits and calculates some statistics. These statistics can be used to find bottlenecks and compare circuits. Statistics are calculated in terms of basic operations. There are 6 basic operations in Concrete:

  • clear addition: x + y where x is encrypted and y is clear

  • encrypted addition: x + y where both x and y are encrypted

  • clear multiplication: x * y where x is encrypted and y is clear

  • encrypted negation: -x where x is encrypted

  • key switch: building block for table lookups

  • packing key switch: building block for table lookups

  • programmable bootstrapping: building block for table lookups

You can print all statistics using show_statistics configuration option:

from concrete import fhe

@fhe.compiler({"x": "encrypted"})
def f(x):
    return (x**2) + (2*x) + 4

inputset = range(2**2)
circuit = f.compile(inputset, show_statistics=True)

This code will print:

Statistics
--------------------------------------------------------------------------------
size_of_secret_keys: 22648
size_of_bootstrap_keys: 51274176
size_of_keyswitch_keys: 64092720
size_of_inputs: 16392
size_of_outputs: 16392
p_error: 9.627450598589458e-06
global_p_error: 9.627450598589458e-06
complexity: 99198195.0
programmable_bootstrap_count: 1
programmable_bootstrap_count_per_parameter: {
    BootstrapKeyParam(polynomial_size=2048, glwe_dimension=1, input_lwe_dimension=781, level=1, base_log=23, variance=9.940977002694397e-32): 1
}
key_switch_count: 1
key_switch_count_per_parameter: {
    KeyswitchKeyParam(level=5, base_log=3, variance=1.939836732335308e-11): 1
}
packing_key_switch_count: 0
clear_addition_count: 1
clear_addition_count_per_parameter: {
    LweSecretKeyParam(dimension=2048): 1
}
encrypted_addition_count: 1
encrypted_addition_count_per_parameter: {
    LweSecretKeyParam(dimension=2048): 1
}
clear_multiplication_count: 1
clear_multiplication_count_per_parameter: {
    LweSecretKeyParam(dimension=2048): 1
}
encrypted_negation_count: 0
--------------------------------------------------------------------------------

Each of these properties can be directly accessed on the circuit (e.g., circuit.programmable_bootstrap_count).

Tags

Imagine you have a neural network with 10 layers, each of them tagged. You can easily see the amount of additions and multiplications required for matrix multiplications per layer:

Statistics
--------------------------------------------------------------------------------
clear_multiplication_count_per_tag: {
    /model/model: 53342
    /model/model.0/Gemm: 14720
    /model/model.0/Gemm.matmul: 14720
    /model/model.2/Gemm: 11730
    /model/model.2/Gemm.matmul: 11730
    /model/model.4/Gemm: 9078
    /model/model.4/Gemm.matmul: 9078
    /model/model.6/Gemm: 6764
    /model/model.6/Gemm.matmul: 6764
    /model/model.8/Gemm: 4788
    /model/model.8/Gemm.matmul: 4788
    /model/model.10/Gemm: 3150
    /model/model.10/Gemm.matmul: 3150
    /model/model.12/Gemm: 1850
    /model/model.12/Gemm.matmul: 1850
    /model/model.14/Gemm: 888
    /model/model.14/Gemm.matmul: 888
    /model/model.16/Gemm: 264
    /model/model.16/Gemm.matmul: 264
    /model/model.18/Gemm: 110
    /model/model.18/Gemm.matmul: 110
}
encrypted_addition_count_per_tag: {
    /model/model: 53342
    /model/model.0/Gemm: 14720
    /model/model.0/Gemm.matmul: 14720
    /model/model.2/Gemm: 11730
    /model/model.2/Gemm.matmul: 11730
    /model/model.4/Gemm: 9078
    /model/model.4/Gemm.matmul: 9078
    /model/model.6/Gemm: 6764
    /model/model.6/Gemm.matmul: 6764
    /model/model.8/Gemm: 4788
    /model/model.8/Gemm.matmul: 4788
    /model/model.10/Gemm: 3150
    /model/model.10/Gemm.matmul: 3150
    /model/model.12/Gemm: 1850
    /model/model.12/Gemm.matmul: 1850
    /model/model.14/Gemm: 888
    /model/model.14/Gemm.matmul: 888
    /model/model.16/Gemm: 264
    /model/model.16/Gemm.matmul: 264
    /model/model.18/Gemm: 110
    /model/model.18/Gemm.matmul: 110
}
--------------------------------------------------------------------------------
PreviousDirect CircuitsNextCommon Workarounds

Last updated 1 year ago

Was this helpful?

Circuit analysis also considers !

tags