Concrete
WebsiteLibrariesProducts & ServicesDevelopersSupport
2.4
2.4
  • What is Concrete?
  • Getting Started
    • Basics of FHE programs
    • Installation
    • Quick Start
    • Compatibility
    • Exactness
    • Performance
    • Terminology and Structure
  • Tutorials
    • Decorator
    • Progressbar
    • Formatting
    • Tagging
    • Extensions
    • Comparisons
    • Bitwise Operations
    • Table Lookups
    • Rounding
    • Floating Points
    • Multi Precision
    • Multi Parameters
    • Simulation
    • Direct Circuits
    • Statistics
    • Common Workarounds
  • Application Tutorials
    • Key Value Database
    • SHA-256
  • How To
    • Configure
    • Manage Keys
    • Deploy
    • Reuse Arguments
    • Debug
    • Call FHE circuits from other languages
  • Explanations
    • Frontend fusing
    • Compilation
      • Automatic Crypto Parameters choice
      • MLIR FHE Dialects
        • FHELinalg Dialect
        • FHE Dialect
        • TFHE Dialect
        • Concrete Dialect
        • Tracing Dialect
        • Runtime Dialect
        • SDFG Dialect
    • Security curves
  • Developer
    • Contribute
    • Project layout
    • Compiler backend
      • Adding a new backend
Powered by GitBook

Libraries

  • TFHE-rs
  • Concrete
  • Concrete ML
  • fhEVM

Developers

  • Blog
  • Documentation
  • Github
  • FHE resources

Company

  • About
  • Introduction to FHE
  • Media
  • Careers
On this page

Was this helpful?

Export as PDF
  1. Tutorials

Simulation

PreviousMulti ParametersNextDirect Circuits

Last updated 1 year ago

Was this helpful?

During development, the speed of homomorphic execution can be a blocker for fast prototyping. You could call the function you're trying to compile directly, of course, but it won't be exactly the same as FHE execution, which has a certain probability of error (see ).

To overcome this issue, simulation is introduced:

from concrete import fhe
import numpy as np

@fhe.compiler({"x": "encrypted"})
def f(x):
    return (x + 1) ** 2

inputset = [np.random.randint(0, 10, size=(10,)) for _ in range(10)]
circuit = f.compile(inputset, p_error=0.1, fhe_simulation=True)

sample = np.array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9])

actual = f(sample)
simulation = circuit.simulate(sample)

print(actual.tolist())
print(simulation.tolist())

After the simulation runs, it prints the following:

[1, 4, 9, 16, 25, 36, 49, 64, 81, 100]
[1, 4, 9, 16, 16, 36, 49, 64, 81, 100]

There are some operations which are not supported in simulation yet. They will result in compilation failures. You can revert to simulation using graph execution using circuit.graph(...) instead of circuit.simulate(...), which won't simulate FHE, but it will evaluate the computation graph, which is like simulating the operations without any errors due to FHE.

Exactness