Concrete
WebsiteLibrariesProducts & ServicesDevelopersSupport
2.4
2.4
  • What is Concrete?
  • Getting Started
    • Basics of FHE programs
    • Installation
    • Quick Start
    • Compatibility
    • Exactness
    • Performance
    • Terminology and Structure
  • Tutorials
    • Decorator
    • Progressbar
    • Formatting
    • Tagging
    • Extensions
    • Comparisons
    • Bitwise Operations
    • Table Lookups
    • Rounding
    • Floating Points
    • Multi Precision
    • Multi Parameters
    • Simulation
    • Direct Circuits
    • Statistics
    • Common Workarounds
  • Application Tutorials
    • Key Value Database
    • SHA-256
  • How To
    • Configure
    • Manage Keys
    • Deploy
    • Reuse Arguments
    • Debug
    • Call FHE circuits from other languages
  • Explanations
    • Frontend fusing
    • Compilation
      • Automatic Crypto Parameters choice
      • MLIR FHE Dialects
        • FHELinalg Dialect
        • FHE Dialect
        • TFHE Dialect
        • Concrete Dialect
        • Tracing Dialect
        • Runtime Dialect
        • SDFG Dialect
    • Security curves
  • Developer
    • Contribute
    • Project layout
    • Compiler backend
      • Adding a new backend
Powered by GitBook

Libraries

  • TFHE-rs
  • Concrete
  • Concrete ML
  • fhEVM

Developers

  • Blog
  • Documentation
  • Github
  • FHE resources

Company

  • About
  • Introduction to FHE
  • Media
  • Careers
On this page
  • fhe.univariate(function)
  • fhe.conv(...)
  • fhe.maxpool(...)
  • fhe.array(...)
  • fhe.zero()
  • fhe.zeros(shape)
  • fhe.one()
  • fhe.ones(shape)
  • fhe.hint(value, **kwargs)

Was this helpful?

Export as PDF
  1. Tutorials

Extensions

Concrete supports native Python and NumPy operations as much as possible, but not everything in Python or NumPy is available. Therefore, we provide some extensions ourselves to improve your experience.

fhe.univariate(function)

Allows you to wrap any univariate function into a single table lookup:

import numpy as np
from concrete import fhe

def complex_univariate_function(x):

    def per_element(element):
        result = 0
        for i in range(element):
            result += i
        return result

    return np.vectorize(per_element)(x)

@fhe.compiler({"x": "encrypted"})
def f(x):
    return fhe.univariate(complex_univariate_function)(x)

inputset = [np.random.randint(0, 5, size=(3, 2)) for _ in range(10)]
circuit = f.compile(inputset)

sample = np.array([
    [0, 4],
    [2, 1],
    [3, 0],
])
assert np.array_equal(circuit.encrypt_run_decrypt(sample), complex_univariate_function(sample))

The wrapped function:

  • shouldn't have any side effects (e.g., no modification of global state)

  • should be deterministic (e.g., no random numbers)

  • should have the same output shape as its input (i.e., output.shape should be the same with input.shape)

  • each output element should correspond to a single input element (e.g., output[0] should only depend on input[0])

If any of these constraints are violated, the outcome is undefined.

fhe.conv(...)

import numpy as np
from concrete import fhe

weight = np.array([[2, 1], [3, 2]]).reshape(1, 1, 2, 2)

@fhe.compiler({"x": "encrypted"})
def f(x):
    return fhe.conv(x, weight, strides=(2, 2), dilations=(1, 1), group=1)

inputset = [np.random.randint(0, 4, size=(1, 1, 4, 4)) for _ in range(10)]
circuit = f.compile(inputset)

sample = np.array(
    [
        [3, 2, 1, 0],
        [3, 2, 1, 0],
        [3, 2, 1, 0],
        [3, 2, 1, 0],
    ]
).reshape(1, 1, 4, 4)
assert np.array_equal(circuit.encrypt_run_decrypt(sample), f(sample))

Only 2D convolutions without padding and with one group are currently supported.

fhe.maxpool(...)

import numpy as np
from concrete import fhe

@fhe.compiler({"x": "encrypted"})
def f(x):
    return fhe.maxpool(x, kernel_shape=(2, 2), strides=(2, 2), dilations=(1, 1))

inputset = [np.random.randint(0, 4, size=(1, 1, 4, 4)) for _ in range(10)]
circuit = f.compile(inputset)

sample = np.array(
    [
        [3, 2, 1, 0],
        [3, 2, 1, 0],
        [3, 2, 1, 0],
        [3, 2, 1, 0],
    ]
).reshape(1, 1, 4, 4)
assert np.array_equal(circuit.encrypt_run_decrypt(sample), f(sample))

Only 2D maxpooling without padding and up to 15-bits is currently supported.

fhe.array(...)

Allows you to create encrypted arrays:

import numpy as np
from concrete import fhe

@fhe.compiler({"x": "encrypted", "y": "encrypted"})
def f(x, y):
    return fhe.array([x, y])

inputset = [(3, 2), (7, 0), (0, 7), (4, 2)]
circuit = f.compile(inputset)

sample = (3, 4)
assert np.array_equal(circuit.encrypt_run_decrypt(*sample), f(*sample))

Currently, only scalars can be used to create arrays.

fhe.zero()

Allows you to create an encrypted scalar zero:

from concrete import fhe
import numpy as np

@fhe.compiler({"x": "encrypted"})
def f(x):
    z = fhe.zero()
    return x + z

inputset = range(10)
circuit = f.compile(inputset)

for x in range(10):
    assert circuit.encrypt_run_decrypt(x) == x

fhe.zeros(shape)

Allows you to create an encrypted tensor of zeros:

from concrete import fhe
import numpy as np

@fhe.compiler({"x": "encrypted"})
def f(x):
    z = fhe.zeros((2, 3))
    return x + z

inputset = range(10)
circuit = f.compile(inputset)

for x in range(10):
    assert np.array_equal(circuit.encrypt_run_decrypt(x), np.array([[x, x, x], [x, x, x]]))

fhe.one()

Allows you to create an encrypted scalar one:

from concrete import fhe
import numpy as np

@fhe.compiler({"x": "encrypted"})
def f(x):
    z = fhe.one()
    return x + z

inputset = range(10)
circuit = f.compile(inputset)

for x in range(10):
    assert circuit.encrypt_run_decrypt(x) == x + 1

fhe.ones(shape)

Allows you to create an encrypted tensor of ones:

from concrete import fhe
import numpy as np

@fhe.compiler({"x": "encrypted"})
def f(x):
    z = fhe.ones((2, 3))
    return x + z

inputset = range(10)
circuit = f.compile(inputset)

for x in range(10):
    assert np.array_equal(circuit.encrypt_run_decrypt(x), np.array([[x, x, x], [x, x, x]]) + 1)

fhe.hint(value, **kwargs)

Allows you to hint properties of a value. Imagine you have this circuit:

from concrete import fhe
import numpy as np

@fhe.compiler({"x": "encrypted"})
def f(x, y, z):
    a = x | y
    b = y & z
    c = a ^ b
    return c

inputset = [
    (np.random.randint(0, 2**8), np.random.randint(0, 2**8), np.random.randint(0, 2**8))
    for _ in range(3)
]
circuit = f.compile(inputset)

print(circuit)

You'd expect all of a, b, and c to be 8-bits, but because inputset is very small, this code could print:

%0 = x                          # EncryptedScalar<uint8>        ∈ [173, 240]
%1 = y                          # EncryptedScalar<uint8>        ∈ [52, 219]
%2 = z                          # EncryptedScalar<uint8>        ∈ [36, 252]
%3 = bitwise_or(%0, %1)         # EncryptedScalar<uint8>        ∈ [243, 255]
%4 = bitwise_and(%1, %2)        # EncryptedScalar<uint7>        ∈ [0, 112] 
                                                  ^^^^^ this can lead to bugs
%5 = bitwise_xor(%3, %4)        # EncryptedScalar<uint8>        ∈ [131, 255]
return %5

The first solution in these cases should be to use a bigger inputset, but it can still be tricky to solve with the inputset. That's where hint extension comes into play. Hints are a way to provide extra information to compilation process:

  • Bit-width hints are for constraining the minimum number of bits in the encoded the value. If you hint a value to be 8-bits, it means it should be at least uint8 or int8.

To fix f using hints, you can do:

@fhe.compiler({"x": "encrypted", "y": "encrypted", "z": "encrypted"})
def f(x, y, z):
    # hint that inputs should be considered at least 8-bits
    x = fhe.hint(x, bit_width=8)
    y = fhe.hint(y, bit_width=8)
    z = fhe.hint(z, bit_width=8)

    # hint that intermediates should be considered at least 8-bits
    a = fhe.hint(x | y, bit_width=8)
    b = fhe.hint(y & z, bit_width=8)
    c = fhe.hint(a ^ b, bit_width=8)

    return c

Hints are only applied to the value being hinted, and no other value. If you want the hint to be applied to multiple values, you need to hint all of them.

you'll always see:

%0 = x                          # EncryptedScalar<uint8>        ∈ [...]
%1 = y                          # EncryptedScalar<uint8>        ∈ [...]
%2 = z                          # EncryptedScalar<uint8>        ∈ [...]
%3 = bitwise_or(%0, %1)         # EncryptedScalar<uint8>        ∈ [...]
%4 = bitwise_and(%1, %2)        # EncryptedScalar<uint8>        ∈ [...] 
%5 = bitwise_xor(%3, %4)        # EncryptedScalar<uint8>        ∈ [...]
return %5

regardless of the bounds.

PreviousTaggingNextComparisons

Last updated 1 year ago

Was this helpful?

Allows you to perform a convolution operation, with the same semantic as :

Allows you to perform a maxpool operation, with the same semantic as :

onnx.Conv
onnx.MaxPool