Concrete ML
WebsiteLibrariesProducts & ServicesDevelopersSupport
1.9
1.9
  • Welcome
  • Get Started
    • What is Concrete ML?
    • Installation
    • Key concepts
    • Inference in the cloud
  • Built-in Models
    • Linear models
    • Tree-based models
    • Neural networks
    • Nearest neighbors
    • Encrypted dataframe
    • Encrypted training
  • LLMs
    • Inference
    • Encrypted fine-tuning
  • Deep Learning
    • Using Torch
    • Using ONNX
    • Step-by-step guide
    • Debugging models
    • Optimizing inference
  • Guides
    • Prediction with FHE
    • Production deployment
    • Hybrid models
    • Serialization
    • GPU acceleration
  • Tutorials
    • See all tutorials
    • Built-in model examples
    • Deep learning examples
  • References
    • API
  • Explanations
    • Security and correctness
    • Quantization
    • Pruning
    • Compilation
    • Advanced features
    • Project architecture
      • Importing ONNX
      • Quantization tools
      • FHE Op-graph design
      • External libraries
  • Developers
    • Set up the project
    • Set up Docker
    • Documentation
    • Support and issues
    • Contributing
    • Support new ONNX node
    • Release note
    • Feature request
    • Bug report
Powered by GitBook

Libraries

  • TFHE-rs
  • Concrete
  • Concrete ML
  • fhEVM

Developers

  • Blog
  • Documentation
  • Github
  • FHE resources

Company

  • About
  • Introduction to FHE
  • Media
  • Careers
On this page
  • Prerequisite
  • OS/HW support
  • Python support
  • Installation using PyPi
  • Requirements
  • Installation
  • Installation using Docker

Was this helpful?

Export as PDF
  1. Get Started

Installation

PreviousWhat is Concrete ML?NextKey concepts

Last updated 1 month ago

Was this helpful?

This document provides guides on how to install Concrete ML using PyPi or Docker.

Prerequisite

Before you start, determine your environment:

  • Hardware platform

  • Operating System (OS) version

  • Python version

OS/HW support

Depending on your OS/HW, Concrete ML may be installed with Docker or with pip:

OS / HW
Available on Docker
Available on pip

Linux

Yes

Yes

Windows

Yes

No

Windows Subsystem for Linux

Yes

Yes

macOS 11+ (Intel)

Yes

Yes

macOS 11+ (Apple Silicon: M1, M2, etc.)

Coming soon

Yes

Python support

  • Version: In the current release, Concrete ML supports only 3.8, 3.9, 3.10, 3.11 and 3.12 versions of python.

  • Linux requirement: The Concrete ML Python package requires glibc >= 2.28. On Linux, you can check your glibc version by running ldd --version.

  • Kaggle installation: Concrete ML can be installed on Kaggle () and on Google Colab.

Most of these limits are shared with the rest of the Concrete stack (namely Concrete Python). Support for more platforms will be added in the future.

Installation using PyPi

Requirements

Installing Concrete ML using PyPi requires a Linux-based OS or macOS (both x86 and Apple Silicon CPUs are supported).

If you need to install on Windows, use Docker or WSL. On WSL, Concrete ML will work as long as the package is not installed in the `/mnt/c/` directory, which corresponds to the host OS filesystem.

Installation

To install Concrete ML from PyPi, run the following:

pip install -U pip wheel setuptools
pip install concrete-ml

This will automatically install all dependencies, notably Concrete.

Installation using Docker

You can install Concrete ML using Docker by either pulling the latest image or a specific version:

docker pull zamafhe/concrete-ml:latest
# or
docker pull zamafhe/concrete-ml:v0.4.0
# Without local volume:
docker run --rm -it -p 8888:8888 zamafhe/concrete-ml

# With local volume to save notebooks on host:
docker run --rm -it -p 8888:8888 -v /host/path:/data zamafhe/concrete-ml

This will launch a Concrete ML enabled Jupyter server in Docker that can be accessed directly from a browser.

Alternatively, you can launch a shell in Docker, with or without volumes:

docker run --rm -it zamafhe/concrete-ml /bin/bash

Zama 5-Question Developer Survey

If you encounter any issue during installation on Apple Silicon mac, please visit this .

You can use the image with Docker volumes, . Use the following command:

We want to hear from you! Take 1 minute to share your thoughts and helping us enhance our documentation and libraries. 👉 to participate.

see question on community for more details
troubleshooting guide on community
see the Docker documentation here
Click here