Linear models
Last updated
Was this helpful?
Last updated
Was this helpful?
This page explains Concrete ML linear models for both classification and regression. These models are based on linear models.
The following models are supported for training on clear data and predicting on encrypted data. Their API is similar to the one of . These models are also compatible with some of scikit-learn's main workflows, such as Pipeline()
and GridSearch()
.
In addition to predicting on encrypted data, the following models support training on encrypted data.
| | |
The n_bits
parameter controls the bit-width of the inputs and weights of the linear models. Linear models do not use table lookups and thus allows weight and inputs to be high precision integers.
For models with input dimensions up to 300
, the parameter n_bits
can be set to 8
or more. When the input dimensions are larger, n_bits
must be reduced to 6-7
. In many cases, quantized models can preserve all performance metrics compared to the non-quantized float models from scikit-learn when n_bits
is down to 6
. You should validate accuracy on held-out test sets and adjust n_bits
accordingly.
An alternative to the example above is to train a scikit-learn model in a separate step and then to convert it to Concrete ML.
Zama 5-Question Developer Survey
These models only support Concrete ciphertexts. See documentation for more details.
For optimal results, you can use standard or min-max normalization to achieve a similar distribution of individual features. When there are many one-hot features, consider as a pre-processing stage.
For a more detailed comparison of the impact of such pre-processing, please refer to .
You can convert an already trained scikit-learn linear model to a Concrete ML one by using the method. See .
The following example shows how to train a LogisticRegression model on a simple data-set and then use FHE to perform inference on encrypted data. You can find a more complete example in the .
The figure below compares the decision boundary of the FHE classifier and a scikit-learn model executed in clear. You can find the complete code in the .
The overall accuracy scores are identical (93%) between the scikit-learn model (executed in the clear) and the Concrete ML one (executed in FHE). In fact, quantization has little impact on the decision boundaries, as linear models can use large precision numbers when quantizing inputs and weights in Concrete ML. Additionally, as the linear models do not use , the FHE computations are always exact, irrespective of the . This ensures that the FHE predictions are always identical to the quantized clear ones.
We want to hear from you! Take 1 minute to share your thoughts and help us enhance our documentation and libraries. 👉 to participate.