API
API Overview
Modules
concrete.ml.common
: Module for shared data structures and code.concrete.ml.common.check_inputs
: Check and conversion tools.concrete.ml.common.debugging
: Module for debugging.concrete.ml.common.debugging.custom_assert
: Provide some variants of assert.concrete.ml.common.utils
: Utils that can be re-used by other pieces of code in the module.concrete.ml.deployment
: Module for deployment of the FHE model.concrete.ml.deployment.fhe_client_server
: APIs for FHE deployment.concrete.ml.onnx
: ONNX module.concrete.ml.onnx.convert
: ONNX conversion related code.concrete.ml.onnx.onnx_model_manipulations
: Some code to manipulate models.concrete.ml.onnx.onnx_utils
: Utils to interpret an ONNX model with numpy.concrete.ml.onnx.ops_impl
: ONNX ops implementation in python + numpy.concrete.ml.quantization
: Modules for quantization.concrete.ml.quantization.base_quantized_op
: Base Quantized Op class that implements quantization for a float numpy op.concrete.ml.quantization.post_training
: Post Training Quantization methods.concrete.ml.quantization.quantized_module
: QuantizedModule API.concrete.ml.quantization.quantized_ops
: Quantized versions of the ONNX operators for post training quantization.concrete.ml.quantization.quantizers
: Quantization utilities for a numpy array/tensor.concrete.ml.sklearn
: Import sklearn models.concrete.ml.sklearn.base
: Module that contains base classes for our libraries estimators.concrete.ml.sklearn.glm
: Implement sklearn's Generalized Linear Models (GLM).concrete.ml.sklearn.linear_model
: Implement sklearn linear model.concrete.ml.sklearn.protocols
: Protocols.concrete.ml.sklearn.qnn
: Scikit-learn interface for concrete quantized neural networks.concrete.ml.sklearn.rf
: Implements RandomForest models.concrete.ml.sklearn.svm
: Implement Support Vector Machine.concrete.ml.sklearn.torch_module
: Implement torch module.concrete.ml.sklearn.tree
: Implement the sklearn tree models.concrete.ml.sklearn.tree_to_numpy
: Implements the conversion of a tree model to a numpy function.concrete.ml.sklearn.xgb
: Implements XGBoost models.concrete.ml.torch
: Modules for torch to numpy conversion.concrete.ml.torch.compile
: torch compilation function.concrete.ml.torch.numpy_module
: A torch to numpy module.concrete.ml.version
: File to manage the version of the package.
Classes
fhe_client_server.FHEModelClient
: Client API to encrypt and decrypt FHE data.fhe_client_server.FHEModelDev
: Dev API to save the model and then load and run the FHE circuit.fhe_client_server.FHEModelServer
: Server API to load and run the FHE circuit.ops_impl.ONNXMixedFunction
: A mixed quantized-raw valued onnx function.base_quantized_op.QuantizedOp
: Base class for quantized ONNX ops implemented in numpy.post_training.ONNXConverter
: Base ONNX to Concrete ML computation graph conversion class.post_training.PostTrainingAffineQuantization
: Post-training Affine Quantization.post_training.PostTrainingQATImporter
: Converter of Quantization Aware Training networks.quantized_module.QuantizedModule
: Inference for a quantized model.quantized_ops.QuantizedAbs
: Quantized Abs op.quantized_ops.QuantizedAdd
: Quantized Addition operator.quantized_ops.QuantizedAvgPool
: Quantized Average Pooling op.quantized_ops.QuantizedBatchNormalization
: Quantized Batch normalization with encrypted input and in-the-clear normalization params.quantized_ops.QuantizedBrevitasQuant
: Brevitas uniform quantization with encrypted input.quantized_ops.QuantizedCast
: Cast the input to the required data type.quantized_ops.QuantizedCelu
: Quantized Celu op.quantized_ops.QuantizedClip
: Quantized clip op.quantized_ops.QuantizedConv
: Quantized Conv op.quantized_ops.QuantizedDiv
: Div operator /.quantized_ops.QuantizedElu
: Quantized Elu op.quantized_ops.QuantizedErf
: Quantized erf op.quantized_ops.QuantizedExp
: Quantized Exp op.quantized_ops.QuantizedFlatten
: Quantized flatten for encrypted inputs.quantized_ops.QuantizedGemm
: Quantized Gemm op.quantized_ops.QuantizedGreater
: Comparison operator >.quantized_ops.QuantizedGreaterOrEqual
: Comparison operator >=.quantized_ops.QuantizedHardSigmoid
: Quantized HardSigmoid op.quantized_ops.QuantizedHardSwish
: Quantized Hardswish op.quantized_ops.QuantizedIdentity
: Quantized Identity op.quantized_ops.QuantizedLeakyRelu
: Quantized LeakyRelu op.quantized_ops.QuantizedLess
: Comparison operator <.quantized_ops.QuantizedLessOrEqual
: Comparison operator <=.quantized_ops.QuantizedLog
: Quantized Log op.quantized_ops.QuantizedMatMul
: Quantized MatMul op.quantized_ops.QuantizedMul
: Multiplication operator.quantized_ops.QuantizedNot
: Quantized Not op.quantized_ops.QuantizedOr
: Or operator ||.quantized_ops.QuantizedPRelu
: Quantized PRelu op.quantized_ops.QuantizedPad
: Quantized Padding op.quantized_ops.QuantizedPow
: Quantized pow op.quantized_ops.QuantizedReduceSum
: ReduceSum with encrypted input.quantized_ops.QuantizedRelu
: Quantized Relu op.quantized_ops.QuantizedReshape
: Quantized Reshape op.quantized_ops.QuantizedRound
: Quantized round op.quantized_ops.QuantizedSelu
: Quantized Selu op.quantized_ops.QuantizedSigmoid
: Quantized sigmoid op.quantized_ops.QuantizedSoftplus
: Quantized Softplus op.quantized_ops.QuantizedSub
: Subtraction operator.quantized_ops.QuantizedTanh
: Quantized Tanh op.quantized_ops.QuantizedTranspose
: Transpose operator for quantized inputs.quantized_ops.QuantizedWhere
: Where operator on quantized arrays.quantizers.MinMaxQuantizationStats
: Calibration set statistics.quantizers.QuantizationOptions
: Options for quantization.quantizers.QuantizedArray
: Abstraction of quantized array.quantizers.UniformQuantizationParameters
: Quantization parameters for uniform quantization.quantizers.UniformQuantizer
: Uniform quantizer.base.BaseTreeClassifierMixin
: Mixin class for tree-based classifiers.base.BaseTreeEstimatorMixin
: Mixin class for tree-based estimators.base.BaseTreeRegressorMixin
: Mixin class for tree-based regressors.base.QuantizedTorchEstimatorMixin
: Mixin that provides quantization for a torch module and follows the Estimator API.base.SklearnLinearClassifierMixin
: A Mixin class for sklearn linear classifiers with FHE.base.SklearnLinearModelMixin
: A Mixin class for sklearn linear models with FHE.glm.GammaRegressor
: A Gamma regression model with FHE.glm.PoissonRegressor
: A Poisson regression model with FHE.glm.TweedieRegressor
: A Tweedie regression model with FHE.linear_model.ElasticNet
: An ElasticNet regression model with FHE.linear_model.Lasso
: A Lasso regression model with FHE.linear_model.LinearRegression
: A linear regression model with FHE.linear_model.LogisticRegression
: A logistic regression model with FHE.linear_model.Ridge
: A Ridge regression model with FHE.protocols.ConcreteBaseClassifierProtocol
: Concrete classifier protocol.protocols.ConcreteBaseEstimatorProtocol
: A Concrete Estimator Protocol.protocols.ConcreteBaseRegressorProtocol
: Concrete regressor protocol.protocols.Quantizer
: Quantizer Protocol.qnn.FixedTypeSkorchNeuralNet
: A mixin with a helpful modification to a skorch estimator that fixes the module type.qnn.NeuralNetClassifier
: Scikit-learn interface for quantized FHE compatible neural networks.qnn.NeuralNetRegressor
: Scikit-learn interface for quantized FHE compatible neural networks.qnn.QuantizedSkorchEstimatorMixin
: Mixin class that adds quantization features to Skorch NN estimators.qnn.SparseQuantNeuralNetImpl
: Sparse Quantized Neural Network classifier.rf.RandomForestClassifier
: Implements the RandomForest classifier.rf.RandomForestRegressor
: Implements the RandomForest regressor.svm.LinearSVC
: A Classification Support Vector Machine (SVM).svm.LinearSVR
: A Regression Support Vector Machine (SVM).tree.DecisionTreeClassifier
: Implements the sklearn DecisionTreeClassifier.tree.DecisionTreeRegressor
: Implements the sklearn DecisionTreeClassifier.tree_to_numpy.Task
: Task enumerate.xgb.XGBClassifier
: Implements the XGBoost classifier.xgb.XGBRegressor
: Implements the XGBoost regressor.numpy_module.NumpyModule
: General interface to transform a torch.nn.Module to numpy module.
Functions
check_inputs.check_X_y_and_assert
: sklearn.utils.check_X_y with an assert.check_inputs.check_array_and_assert
: sklearn.utils.check_array with an assert.custom_assert.assert_false
: Provide a custom assert to check that the condition is False.custom_assert.assert_not_reached
: Provide a custom assert to check that a piece of code is never reached.custom_assert.assert_true
: Provide a custom assert to check that the condition is True.utils.generate_proxy_function
: Generate a proxy function for a function accepting only *args type arguments.utils.get_onnx_opset_version
: Return the ONNX opset_version.utils.replace_invalid_arg_name_chars
: Sanitize arg_name, replacing invalid chars by _.convert.get_equivalent_numpy_forward
: Get the numpy equivalent forward of the provided ONNX model.convert.get_equivalent_numpy_forward_and_onnx_model
: Get the numpy equivalent forward of the provided torch Module.onnx_model_manipulations.clean_graph_after_node
: Clean the graph of the onnx model by removing nodes after the given node name.onnx_model_manipulations.keep_following_outputs_discard_others
: Keep the outputs given in outputs_to_keep and remove the others from the model.onnx_model_manipulations.remove_identity_nodes
: Remove identity nodes from a model.onnx_model_manipulations.remove_node_types
: Remove unnecessary nodes from the ONNX graph.onnx_model_manipulations.remove_unused_constant_nodes
: Remove unused Constant nodes in the provided onnx model.onnx_model_manipulations.simplify_onnx_model
: Simplify an ONNX model, removes unused Constant nodes and Identity nodes.onnx_utils.execute_onnx_with_numpy
: Execute the provided ONNX graph on the given inputs.onnx_utils.get_attribute
: Get the attribute from an ONNX AttributeProto.onnx_utils.get_op_name
: Construct the qualified name of the ONNX operator.ops_impl.cast_to_float
: Cast values to floating points.ops_impl.numpy_abs
: Compute abs in numpy according to ONNX spec.ops_impl.numpy_acos
: Compute acos in numpy according to ONNX spec.ops_impl.numpy_acosh
: Compute acosh in numpy according to ONNX spec.ops_impl.numpy_add
: Compute add in numpy according to ONNX spec.ops_impl.numpy_asin
: Compute asin in numpy according to ONNX spec.ops_impl.numpy_asinh
: Compute sinh in numpy according to ONNX spec.ops_impl.numpy_atan
: Compute atan in numpy according to ONNX spec.ops_impl.numpy_atanh
: Compute atanh in numpy according to ONNX spec.ops_impl.numpy_batchnorm
: Compute the batch normalization of the input tensor.ops_impl.numpy_cast
: Execute ONNX cast in Numpy.ops_impl.numpy_celu
: Compute celu in numpy according to ONNX spec.ops_impl.numpy_constant
: Return the constant passed as a kwarg.ops_impl.numpy_cos
: Compute cos in numpy according to ONNX spec.ops_impl.numpy_cosh
: Compute cosh in numpy according to ONNX spec.ops_impl.numpy_div
: Compute div in numpy according to ONNX spec.ops_impl.numpy_elu
: Compute elu in numpy according to ONNX spec.ops_impl.numpy_equal
: Compute equal in numpy according to ONNX spec.ops_impl.numpy_erf
: Compute erf in numpy according to ONNX spec.ops_impl.numpy_exp
: Compute exponential in numpy according to ONNX spec.ops_impl.numpy_flatten
: Flatten a tensor into a 2d array.ops_impl.numpy_greater
: Compute greater in numpy according to ONNX spec.ops_impl.numpy_greater_float
: Compute greater in numpy according to ONNX spec and cast outputs to floats.ops_impl.numpy_greater_or_equal
: Compute greater or equal in numpy according to ONNX spec.ops_impl.numpy_greater_or_equal_float
: Compute greater or equal in numpy according to ONNX specs and cast outputs to floats.ops_impl.numpy_hardsigmoid
: Compute hardsigmoid in numpy according to ONNX spec.ops_impl.numpy_hardswish
: Compute hardswish in numpy according to ONNX spec.ops_impl.numpy_identity
: Compute identity in numpy according to ONNX spec.ops_impl.numpy_leakyrelu
: Compute leakyrelu in numpy according to ONNX spec.ops_impl.numpy_less
: Compute less in numpy according to ONNX spec.ops_impl.numpy_less_float
: Compute less in numpy according to ONNX spec and cast outputs to floats.ops_impl.numpy_less_or_equal
: Compute less or equal in numpy according to ONNX spec.ops_impl.numpy_less_or_equal_float
: Compute less or equal in numpy according to ONNX spec and cast outputs to floats.ops_impl.numpy_log
: Compute log in numpy according to ONNX spec.ops_impl.numpy_matmul
: Compute matmul in numpy according to ONNX spec.ops_impl.numpy_mul
: Compute mul in numpy according to ONNX spec.ops_impl.numpy_not
: Compute not in numpy according to ONNX spec.ops_impl.numpy_not_float
: Compute not in numpy according to ONNX spec and cast outputs to floats.ops_impl.numpy_or
: Compute or in numpy according to ONNX spec.ops_impl.numpy_or_float
: Compute or in numpy according to ONNX spec and cast outputs to floats.ops_impl.numpy_pow
: Compute pow in numpy according to ONNX spec.ops_impl.numpy_relu
: Compute relu in numpy according to ONNX spec.ops_impl.numpy_round
: Compute round in numpy according to ONNX spec.ops_impl.numpy_selu
: Compute selu in numpy according to ONNX spec.ops_impl.numpy_sigmoid
: Compute sigmoid in numpy according to ONNX spec.ops_impl.numpy_sin
: Compute sin in numpy according to ONNX spec.ops_impl.numpy_sinh
: Compute sinh in numpy according to ONNX spec.ops_impl.numpy_softmax
: Compute softmax in numpy according to ONNX spec.ops_impl.numpy_softplus
: Compute softplus in numpy according to ONNX spec.ops_impl.numpy_sub
: Compute sub in numpy according to ONNX spec.ops_impl.numpy_tan
: Compute tan in numpy according to ONNX spec.ops_impl.numpy_tanh
: Compute tanh in numpy according to ONNX spec.ops_impl.numpy_thresholdedrelu
: Compute thresholdedrelu in numpy according to ONNX spec.ops_impl.numpy_transpose
: Transpose in numpy according to ONNX spec.ops_impl.numpy_where
: Compute the equivalent of numpy.where.ops_impl.numpy_where_body
: Compute the equivalent of numpy.where.ops_impl.onnx_func_raw_args
: Decorate a numpy onnx function to flag the raw/non quantized inputs.ops_impl.torch_avgpool
: Compute Average Pooling using Torch.quantizers.fill_from_kwargs
: Fill a parameter set structure from kwargs parameters.tree_to_numpy.tree_to_numpy
: Convert the tree inference to a numpy functions using Hummingbird.compile.compile_brevitas_qat_model
: Compile a Brevitas Quantization Aware Training model.compile.compile_onnx_model
: Compile a torch module into an FHE equivalent.compile.compile_torch_model
: Compile a torch module into an FHE equivalent.compile.convert_torch_tensor_or_numpy_array_to_numpy_array
: Convert a torch tensor or a numpy array to a numpy array.
Last updated