Concrete-ML provides several of the most popular classification and regression tree models that can be found in :
Concrete-ML
scikit-learn
In addition to support for scikit-learn, Concrete-ML also supports 's XGBClassifier:
Concrete-ML
XGboost
Example
Here's an example of how to use this model in FHE on a popular data-set using some of scikit-learn's pre-processing tools. A more complete example can be found in the .
from sklearn.datasets import load_breast_cancer
from sklearn.decomposition import PCA
from sklearn.model_selection import GridSearchCV, train_test_split
from sklearn.pipeline import Pipeline
from sklearn.preprocessing import StandardScaler
from concrete.ml.sklearn.xgb import XGBClassifier
# Get data-set and split into train and test
X, y = load_breast_cancer(return_X_y=True)
# Split the train and test set
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=0)
# Define our model
model = XGBClassifier(n_jobs=1, n_bits=3)
# Define the pipeline
# We will normalize the data and apply a PCA before fitting the model
pipeline = Pipeline(
[("standard_scaler", StandardScaler()), ("pca", PCA(random_state=0)), ("model", model)]
)
# Define the parameters to tune
param_grid = {
"pca__n_components": [2, 5, 10, 15],
"model__max_depth": [2, 3, 5],
"model__n_estimators": [5, 10, 20],
}
# Instantiate the grid search with 5-fold cross validation on all available cores
grid = GridSearchCV(pipeline, param_grid, cv=5, n_jobs=-1, scoring="accuracy")
# Launch the grid search
grid.fit(X_train, y_train)
# Print the best parameters found
print(f"Best parameters found: {grid.best_params_}")
# Output:
# Best parameters found: {'model__max_depth': 5, 'model__n_estimators': 10, 'pca__n_components': 5}
# Currently we only focus on model inference in FHE
# The data transformation will be done in clear (client machine)
# while the model inference will be done in FHE on a server.
# The pipeline can be split into 2 parts:
# 1. data transformation
# 2. estimator
best_pipeline = grid.best_estimator_
data_transformation_pipeline = best_pipeline[:-1]
model = best_pipeline[-1]
# Transform test set
X_train_transformed = data_transformation_pipeline.transform(X_train)
X_test_transformed = data_transformation_pipeline.transform(X_test)
# Evaluate the model on the test set in clear
y_pred_clear = model.predict(X_test_transformed)
print(f"Test accuracy in clear: {(y_pred_clear == y_test).mean():0.2f}")
# Output:
# Test accuracy: 0.98
# Compile the model to FHE
model.compile(X_train_transformed)
# Perform the inference in FHE
# Warning: this will take a while. It is recommended to run this with a very small batch of
# example first (e.g. N_TEST_FHE = 1)
# Note that here the encryption and decryption is done behind the scene.
N_TEST_FHE = 1
y_pred_fhe = model.predict(X_test_transformed[:N_TEST_FHE], execute_in_fhe=True)
# Assert that FHE predictions are the same as the clear predictions
print(f"{(y_pred_fhe == y_pred_clear[:N_TEST_FHE]).sum()} "
f"examples over {N_TEST_FHE} have a FHE inference equal to the clear inference.")
# Output:
# 1 examples over 1 have a FHE inference equal to the clear inference
This graph shows the impact of quantization over the decision boundaries in the Concrete-ML FHE decision tree models. In the 3-bits model, only a rough, highly-discrete decision function is observed. This results in a small decrease of accuracy of about 7% compared to the initial XGBoost classifier. Besides, using 6-bits of quantization makes the model reach 93% accuracy, drastically reducing this difference to only 1.7 percentage points.
In fact, the quantization process may sometimes create some artifacts that could lead to a decrease in performance. Still, as the quantization is done individually on each input feature, the artifacts are minor when considering small tree-based models with 5-6 bits quantization. Thus, FHE tree-based models reach similar scores as their equivalent floating point ones.
The following graph shows that using 5-6 bits of quantization is usually sufficient to reach the performance of a non-quantized XGBoost model on floating point data. The metrics plotted are accuracy and F1-score on the spambase data-set.
Using the above example, we can then plot how the model classifies the inputs and then compare those results with the XGBoost model executed in clear. A 6-bits model is also given in order to better understand the impact of quantization on classification. Similar plots can be found in the .