concrete.ml.sklearn.svm
module concrete.ml.sklearn.svm
concrete.ml.sklearn.svm
Implement Support Vector Machine.
class LinearSVR
LinearSVR
A Regression Support Vector Machine (SVM).
method __init__
__init__
__init__(
n_bits=2,
epsilon=0.0,
tol=0.0001,
C=1.0,
loss='epsilon_insensitive',
fit_intercept=True,
intercept_scaling=1.0,
dual=True,
verbose=0,
random_state=None,
max_iter=1000
)
property fhe_circuit
Get the FHE circuit.
Returns:
Circuit
: the FHE circuit
property input_quantizers
Get the input quantizers.
Returns:
List[QuantizedArray]
: the input quantizers
property onnx_model
Get the ONNX model.
.. # noqa: DAR201
Returns:
onnx.ModelProto
: the ONNX model
property output_quantizers
Get the input quantizers.
Returns:
List[QuantizedArray]
: the input quantizers
property quantize_input
Get the input quantization function.
Returns:
Callable
: function that quantizes the input
class LinearSVC
LinearSVC
A Classification Support Vector Machine (SVM).
method __init__
__init__
__init__(
n_bits=2,
penalty='l2',
loss='squared_hinge',
dual=True,
tol=0.0001,
C=1.0,
multi_class='ovr',
fit_intercept=True,
intercept_scaling=1,
class_weight=None,
verbose=0,
random_state=None,
max_iter=1000
)
property fhe_circuit
Get the FHE circuit.
Returns:
Circuit
: the FHE circuit
property input_quantizers
Get the input quantizers.
Returns:
List[QuantizedArray]
: the input quantizers
property onnx_model
Get the ONNX model.
.. # noqa: DAR201
Returns:
onnx.ModelProto
: the ONNX model
property output_quantizers
Get the input quantizers.
Returns:
List[QuantizedArray]
: the input quantizers
property quantize_input
Get the input quantization function.
Returns:
Callable
: function that quantizes the input
Last updated
Was this helpful?