This document outlines how to use the TFHE-rs WebAssembly (WASM) client API for key generation, encryption, and decryption, providing setup examples for Node.js and web browsers.
TFHE-rs supports WASM client API, which includes functionality for key generation, encryption, and decryption. However, it does not support FHE computations.
TFHE-rs supports 3 WASM targets:
Node.js: For use in Node.js applications or packages
Web: For use in web browsers
Web-parallel: For use in web browsers with multi-threading support
The core of the API remains the same, requiring only minor changes in the initialization functions.
Node.js
Example:
const {init_panic_hook,ShortintParametersName,ShortintParameters,TfheClientKey,TfheCompactPublicKey,TfheCompressedServerKey,TfheConfigBuilder,CompactFheUint32List} =require("./pkg/tfhe.js");functionfhe_uint32_example() {// Makes it so that if a rust thread panics,// the error message will be displayed in the consoleinit_panic_hook();constblock_params=newShortintParameters(ShortintParametersName.V0_11_PARAM_MESSAGE_2_CARRY_2_COMPACT_PK_PBS_KS_GAUSSIAN_2M64);let config =TfheConfigBuilder.default().build();let clientKey =TfheClientKey.generate(config);let compressedServerKey =TfheCompressedServerKey.new(clientKey);let publicKey =TfheCompactPublicKey.new(clientKey);let values = [0,1,2394,U32_MAX];let compact_list =CompactFheUint32List.encrypt_with_compact_public_key(values, publicKey);let serialized_list =compact_list.serialize();let deserialized_list =CompactFheUint32List.deserialize(serialized_list);let encrypted_list =deserialized_list.expand();assert.deepStrictEqual(encrypted_list.length,values.length);for (let i =0; i <values.length; i++) {let decrypted = encrypted_list[i].decrypt(clientKey);assert.deepStrictEqual(decrypted, values[i]); }}
Web
When using the Web WASM target, you should call an additional init function. With parallelism enabled, you need to call another additional initThreadPool function.
Example:
import init, { initThreadPool,// only available with parallelism init_panic_hook, ShortintParametersName, ShortintParameters, TfheClientKey, TfhePublicKey,} from"./pkg/tfhe.js";asyncfunctionexample() {awaitinit()awaitinitThreadPool(navigator.hardwareConcurrency);awaitinit_panic_hook();constblock_params=newShortintParameters(ShortintParametersName.V0_11_PARAM_MESSAGE_2_CARRY_2_COMPACT_PK_PBS_KS_GAUSSIAN_2M64);// ....}
Compiling the WASM API
Use the provided Makefile in the TFHE-rs repository to compile for the desired target:
make build_node_js_api for the Node.js API
make build_web_js_api for the browser API
make build_web_js_api_parallel for the browser API with parallelism
The compiled WASM packages are located in tfhe/pkg.
The browser API and the Node.js API are available as npm packages. Using npm i tfhe for the browser API and npm i node-tfhe for the Node.js API.
Extra steps for web bundlers
When using the browser API with parallelism, some extra step might be needed depending on the bundler used:
Usage with Webpack
If you're using Webpack v5 (version >= 5.25.1), you don't need to do anything special, as it already supports bundling Workers out of the box.
Usage with Parcel
Parcel v2 also recognises the used syntax and works out of the box.
Usage with Rollup
For Rollup, you'll need @surma/rollup-plugin-off-main-thread plugin (version >= 2.1.0) which brings the same functionality and was tested with this crate.
Alternatively, you can use Vite which has necessary plugins built-in.
TFHE-rs uses WASM to provide a JavaScript (JS) binding to the client-side primitives, like key generation and encryption within the Boolean and shortint modules.
Currently, there are several limitations. Due to a lack of threading support in WASM, key generation can be too slow to be practical for bigger parameter sets.
Some parameter sets lead to the FHE keys exceeding the 2GB memory limit of WASM, making these parameter sets virtually unusable.
First steps using TFHE-rs JS on WASM API
Setting up TFHE-rs JS on WASM API for Node.js programs.
To build the JS on WASM bindings for TFHE-rs, install wasm-pack and the necessary rust toolchain. Cone the TFHE-rs repository and build using the following commands (this will build using the default branch, you can check out a specific tag depending on your requirements):
$gitclonehttps://github.com/zama-ai/tfhe-rs.gitCloninginto'tfhe-rs'......Resolvingdeltas:100% (3866/3866), done.$cdtfhe-rs$cdtfhe$rustuprunwasm-packbuild--release--target=nodejs--features=boolean-client-js-wasm-api,shortint-client-js-wasm-api[INFO]: Compiling to Wasm......[INFO]: :-) Your wasm pkg is ready to publish at ...
The command above targets Node.js. To generate a binding for a web browser, use --target=web. However, this tutorial does not cover that particular use case.
Both Boolean and shortint features are enabled here, but it's possible to use them individually.
After the build, a new directory pkg is available in the tfhe directory.
Commented code to generate keys for shortint and encrypt a ciphertext
Make sure to update the path of the required clause in the example below to match the location of the TFHE package that was just built.
// Here import assert to check the decryption went well and panic otherwiseconstassert=require('node:assert').strict;// Import the Shortint module from the TFHE-rs package generated earlierconst { Shortint,ShortintParametersName,ShortintParameters } =require("/path/to/built/tfhe/pkg");functionshortint_example() {// Get pre-defined parameters from the shortint module to manage messages with 4 bits of useful// information in total (2 bits of "message" and 2 bits of "carry")let params_name =ShortintParametersName.PARAM_MESSAGE_2_CARRY_2_KS_PBS_TUNIFORM_2M64;let params =newShortintParameters(params_name);// Create a new secret ClientKey, this must not be sharedconsole.log("Generating client keys...")let cks =Shortint.new_client_key(params);// Encrypt 3 in a ciphertextconsole.log("Encrypting 3...")let ct =Shortint.encrypt(cks,BigInt(3));// Demonstrate ClientKey serialization (for example saving it on disk on the user device)let serialized_cks =Shortint.serialize_client_key(cks);// Deserializationlet deserialized_cks =Shortint.deserialize_client_key(serialized_cks);// Demonstrate ciphertext serialization to send over the networklet serialized_ct =Shortint.serialize_ciphertext(ct);// Deserialize a ciphertext received over the network for examplelet deserialized_ct =Shortint.deserialize_ciphertext(serialized_ct);// Decrypt with the deserialized objectsconsole.log("Decrypting ciphertext...")let decrypted =Shortint.decrypt(deserialized_cks, deserialized_ct);// Check decryption works as expectedassert.deepStrictEqual(decrypted,BigInt(3));console.log("Decryption successful!")// Generate public evaluation keys, also called ServerKeyconsole.log("Generating compressed ServerKey...")let sks =Shortint.new_compressed_server_key(cks);// Can be serialized to send over the network to the machine doing the evaluationlet serialized_sks =Shortint.serialize_compressed_server_key(sks);let deserialized_sks =Shortint.deserialize_compressed_server_key(serialized_sks);console.log("All done!")}shortint_example();
Then, you can run the example.js script using node as follows: