Operations on encrypted types
The TFHE
library defines the following operations with FHE ciphertexts:
Add
TFHE.add
+
Binary
Sub
TFHE.sub
-
Binary
Mul
TFHE.mul
*
Binary
Div (plaintext divisor)
TFHE.div
Binary
Rem (plaintext divisor)
TFHE.rem
Binary
BitAnd
TFHE.and
&
Binary
BitOr
TFHE.or
|
Binary
BitXor
TFHE.xor
^
Binary
Shift Right
TFHE.shr
Binary
Shift Left
TFHE.shl
Binary
Rotate Right
TFHE.rotr
Binary
Rotate Left
TFHE.rotl
Binary
Equal
TFHE.eq
Binary
Not equal
TFHE.ne
Binary
Greater than or equal
TFHE.ge
Binary
Greater than
TFHE.gt
Binary
Less than or equal
TFHE.le
Binary
Less than
TFHE.lt
Binary
Min
TFHE.min
Binary
Max
TFHE.max
Binary
Neg
TFHE.neg
-
Unary
Not
TFHE.not
~
Unary
Select
TFHE.select
Ternary
Random unsigned int
TFHE.randEuintX()
Random
NOTE: The shift operators
TFHE.shr
andTFHE.shl
can take any encrypted typeeuintX
as a first operand and either auint8
or aeuint8
as a second operand, however the second operand will always be computed modulo the number of bits of the first operand. For example,TFHE.shr(euint64 x, 70)
will actually be equal toTFHE.shr(euint64 x, 6)
because70 % 64 = 6
. This is in contrast to the classical shift operators in Solidity where there is no intermediate modulo operation, so for instance anyuint64
shifted right via>>
would give a null result.
Overloaded operators +
, -
, *
, &
, ... on encrypted integers are supported (using for). As of now, overloaded operators will call the versions without an overflow check.
More information about the supported operations can be found in the function specifications page or in the TFHE-rs docs.
If you find yourself in search of a missing feature, we encourage you to consult our roadmap for upcoming developments. Alternatively, don't hesitate to reach out to us on Discord or visit our community forum.
Zama 5-Question Developer Survey
We want to hear from you! Take 1 minute to share your thoughts and helping us enhance our documentation and libraries. 👉 Click here to participate.
Last updated