As explained in the Basics of FHE, the challenge for developers is to adapt their code to fit FHE constraints. In this document we have collected some common examples to illustrate the kind of optimization one can do to get better performance.
All code snippets provided here are temporary workarounds. In future versions of Concrete, some functions described here could be directly available in a more generic and efficient form. These code snippets are coming from support answers in our community forum
Minimum for Two values
In this first example, we compute a minimum by creating the difference between two numbers y and x and conditionally remove this diff from y to either get x if y>x or y if x>y:
import numpy as npfrom concrete import fhe@fhe.compiler({"x": "encrypted", "y": "encrypted"})defmin_two(x,y): diff = y - x min_x_y = y - np.maximum(y - x, 0)return min_x_yinputset = [tuple(np.random.randint(0, 16, size=2))for _ inrange(50)]circuit = min_two.compile(inputset)x, y = np.random.randint(0, 16, size=2)assert circuit.encrypt_run_decrypt(x, y)==min(x, y)
Maximum for Two values
The companion example of above with the maximum value of two integers instead of the minimum:
import numpy as npfrom concrete import fhe@fhe.compiler({"x": "encrypted", "y": "encrypted"})defmax_two(x,y): diff = y - x max_x_y = y - np.minimum(y - x, 0)return max_x_yinputset = [tuple(np.random.randint(0, 16, size=2))for _ inrange(50)]circuit = max_two.compile(inputset)x, y = np.random.randint(0, 16, size=2)assert circuit.encrypt_run_decrypt(x, y)==max(x, y)
Retrieving a value within an encrypted array with an encrypted index
This example shows how to deal with an array and an encrypted index. It will create a "selection" array filled with 0 except for the requested index that will be 1, and sum the products of all array values by this selection array:
This example filters an encrypted array with an encrypted condition, here a greater than with an encrypted value. It packs all values with a selection bit, resulting from the comparison that allow the unpacking of only the filtered values:
import numpy as npfrom concrete import fhe@fhe.compiler({"numbers": "encrypted", "threshold": "encrypted"})deffiltering(numbers,threshold): is_greater = numbers > threshold shifted_numbers = numbers *2# open space for a single bit at the end combined_numbers_and_is_greater = shifted_numbers + is_greater # put is_greater to that bitdefextract(combination): is_greater = (combination %2) ==1# extract is_greater back from packing if_true = combination //2# if is greater is true, we unpack the number and use it if_false =0# otherwise we set the element to zeroreturn np.where(is_greater, if_true, if_false)# and apply the operationreturn fhe.univariate(extract)(combined_numbers_and_is_greater)inputset = [(np.random.randint(0, 16, size=5), np.random.randint(0, 16)) for _ inrange(50)]circuit = filtering.compile(inputset)numbers = np.random.randint(0, 16, size=5)threshold = np.random.randint(0, 16)assert np.array_equal(circuit.encrypt_run_decrypt(numbers, threshold), list(map(lambdax: x if x > threshold else0, numbers)))
Matrix Row/Col means
In this example Matrix operation, we are introducing a key concept when using Concrete: trying to maximize the parallelization. Here instead of sequentially summing all values to create a mean value, we split the values in sub-groups, and do the mean of the sub-group means:
import numpy as npfrom concrete import fhedefsmallest_prime_divisor(n):if n %2==0:return2for i inrange(3, int(np.sqrt(n)) +1):if n % i ==0:return ireturn ndefmean_of_vector(x):assert x.size !=0if x.size ==1:return x[0] group_size =smallest_prime_divisor(x.size)if x.size == group_size:return np.round(np.sum(x) / x.size).astype(np.int64) groups = []for i inrange(x.size // group_size): start = i * group_size end = start + group_size groups.append(x[start:end]) mean_of_groups = []for group in groups: mean_of_groups.append(np.round(np.sum(group) / group_size).astype(np.int64))returnmean_of_vector(fhe.array(mean_of_groups))@fhe.compiler(({"x": "encrypted"}))defmean_of_matrix(x):returnmean_of_vector(x.flatten())@fhe.compiler(({"x": "encrypted"}))defmean_of_rows_of_matrix(x): means = []for i inrange(x.shape[0]): means.append(mean_of_vector(x[i]))return fhe.array(means)@fhe.compiler(({"x": "encrypted"}))defmean_of_columns_of_matrix(x): means = []for i inrange(x.shape[1]): means.append(mean_of_vector(x[:, i]))return fhe.array(means)inputset = [np.random.randint(0, 16, size=(5,5))for _ inrange(50)]matrix = np.random.randint(0, 16, size=(5, 5))circuit = mean_of_matrix.compile(inputset)assert circuit.encrypt_run_decrypt(matrix)==round(matrix.mean())circuit = mean_of_rows_of_matrix.compile(inputset)assert np.array_equal(circuit.encrypt_run_decrypt(matrix), [round(x) for x in matrix.mean(1)])circuit = mean_of_columns_of_matrix.compile(inputset)assert np.array_equal(circuit.encrypt_run_decrypt(matrix), [round(x) for x in matrix.mean(0)])