TFHE-rs
WebsiteLibrariesProduct & ServicesDevelopersSupport
1.0
1.0
  • Welcome to TFHE-rs
  • Get Started
    • What is TFHE-rs?
    • Installation
    • Quick start
    • Benchmarks
      • CPU Benchmarks
        • Integer
        • Programmable bootstrapping
      • GPU Benchmarks
        • Integer
        • Programmable bootstrapping
      • Zero-knowledge proof benchmarks
    • Security and cryptography
  • FHE Computation
    • Types
      • Integer
      • Strings
      • Array
    • Operations
      • Arithmetic operations
      • Bitwise operations
      • Comparison operations
      • Min/Max operations
      • Ternary conditional operations
      • Casting operations
      • Boolean Operations
      • String Operations
    • Core workflow
      • Configuration and key generation
      • Server key
      • Encryption
      • Decryption
      • Parameters
    • Data handling
      • Compressing ciphertexts/keys
      • Serialization/deserialization
      • Data versioning
    • Advanced features
      • Encrypted pseudo random values
      • Overflow detection
      • Public key encryption
      • Trivial ciphertexts
      • Zero-knowledge proofs
      • Multi-threading with Rayon crate
    • Tooling
      • PBS statistics
      • Generic trait bounds
      • Debugging
  • Configuration
    • Advanced Rust setup
    • GPU acceleration
    • Parallelized PBS
  • Integration
    • JS on WASM API
    • High-level API in C
  • Tutorials
    • Homomorphic parity bit
    • Homomorphic case changing on Ascii string
    • SHA256 with Boolean API
    • All tutorials
  • References
    • API references
    • Fine-grained APIs
      • Quick start
      • Boolean
        • Operations
        • Cryptographic parameters
        • Serialization/Deserialization
      • Shortint
        • Operations
        • Cryptographic parameters
        • Serialization/Deserialization
      • Integer
        • Operations
        • Cryptographic parameters
        • Serialization/Deserialization
    • Core crypto API
      • Quick start
      • Tutorial
  • Explanations
    • TFHE deep dive
  • Developers
    • Contributing
    • Release note
    • Feature request
    • Bug report
Powered by GitBook

Libraries

  • TFHE-rs
  • Concrete
  • Concrete ML
  • fhEVM

Developers

  • Blog
  • Documentation
  • Github
  • FHE resources

Company

  • About
  • Introduction to FHE
  • Media
  • Careers
On this page

Was this helpful?

Export as PDF
  1. FHE Computation
  2. Advanced features

Overflow detection

This document explains how TFHE-rs implements specific operations to detect overflows in computations.

The mechanism of detecting overflow consists in returning an encrypted flag with a specific ciphertext that reflects the state of the computation. When an overflow occurs, this flag is set to true. Since the server is not able to evaluate this encrypted value, the client has to check the flag value when decrypting to determine if an overflow has happened.

These operations might be slower than their non-overflow-detecting equivalent, so they are not enabled by default. To use them, you must explicitly call specific operators. At the moment, only additions, subtractions, and multiplications are supported. We plan to add more operations in future releases.

Here's the list of operations supported along with their symbol:

name
symbol
type

overflow_add

Binary

overflow_sub

Binary

overflow_mul

Binary

The usage of these operations is similar to the standard ones. The key difference is in the decryption process, as shown in following example:

// Adds two [FheUint] and returns a boolean indicating overflow.
//
// * The operation is modular, i.e on overflow the result wraps around.
// * On overflow the [FheBool] is true, otherwise false

use tfhe::prelude::*;
use tfhe::{generate_keys, set_server_key, ConfigBuilder, FheUint16};

let (client_key, server_key) = generate_keys(ConfigBuilder::default());
set_server_key(server_key);

let a = FheUint16::encrypt(u16::MAX, &client_key);
let b = FheUint16::encrypt(1u16, &client_key);

let (result, overflowed) = (&a).overflowing_add(&b);
let result: u16 = result.decrypt(&client_key);
assert_eq!(result, u16::MAX.wrapping_add(1u16));
assert_eq!(
    overflowed.decrypt(&client_key),
    u16::MAX.overflowing_add(1u16).1
);
assert!(overflowed.decrypt(&client_key));
PreviousEncrypted pseudo random valuesNextPublic key encryption

Last updated 2 months ago

Was this helpful?

Add
Sub
Mul