Run on GPU

TFHE-rs now includes a GPU backend, featuring a CUDA implementation for performing integer arithmetics on encrypted data. In what follows, a simple tutorial is introduced: it shows how to update your existing program to use GPU acceleration, or how to start a new one using GPU.

Prerequisites

  • Cuda version >= 10

  • Compute Capability >= 3.0

  • gcc >= 8.0 - check this page for more details about nvcc/gcc compatible versions

  • cmake >= 3.24

  • Rust version - check this page

Importing to your project

To use the TFHE-rs GPU backend in your project, you first need to add it as a dependency in your Cargo.toml.

If you are using an x86 machine:

tfhe = { version = "0.5.5", features = [ "boolean", "shortint", "integer", "x86_64-unix", "gpu" ] }

If you are using an ARM machine:

tfhe = { version = "0.5.5", features = [ "boolean", "shortint", "integer", "aarch64-unix", "gpu" ] }

When running code that uses TFHE-rs, it is highly recommended to run in release mode with cargo's --release flag to have the best possible performance

Supported platforms

TFHE-rs GPU backend is supported on Linux (x86, aarch64).

OS
x86
aarch64

Linux

x86_64-unix

aarch64-unix*

macOS

Unsupported

Unsupported*

Windows

Unsupported

Unsupported

A first example

Configuring and creating keys.

In comparison with the CPU example, the only difference lies into the key creation, which is detailed here

Here is a full example (combining the client and server parts):

use tfhe::{ConfigBuilder, set_server_key, FheUint8, ClientKey, CompressedServerKey};
use tfhe::prelude::*;

fn main() {

    let config = ConfigBuilder::default().build();

    let client_key= ClientKey::generate(config);
    let compressed_server_key = CompressedServerKey::new(&client_key);

    let gpu_key = compressed_server_key.decompress_to_gpu();

    let clear_a = 27u8;
    let clear_b = 128u8;

    let a = FheUint8::encrypt(clear_a, &client_key);
    let b = FheUint8::encrypt(clear_b, &client_key);

    //Server-side

    set_server_key(gpu_key);
    let result = a + b;

    //Client-side
    let decrypted_result: u8 = result.decrypt(&client_key);

    let clear_result = clear_a + clear_b;

    assert_eq!(decrypted_result, clear_result);
}

Setting the keys

The configuration of the key is different from the CPU. More precisely, if both client and server keys are still generated by the Client (which is assumed to run on a CPU), the server key has then to be decompressed by the Server to be converted into the right format. To do so, the server should run this function: decompressed_to_gpu(). From then on, there is no difference between the CPU and the GPU.

Encrypting data

On the client-side, the method to encrypt the data is exactly the same than the CPU one, i.e.:

    let clear_a = 27u8;
    let clear_b = 128u8;

    let a = FheUint8::encrypt(clear_a, &client_key);
    let b = FheUint8::encrypt(clear_b, &client_key);

Computation.

The server must first set its keys up, like in the CPU, with: set_server_key(gpu_key); . Then, homomorphic computations are done with the same code than the one described here.

    //Server-side
    set_server_key(gpu_key);
    let result = a + b;

    //Client-side
    let decrypted_result: u8 = result.decrypt(&client_key);

    let clear_result = clear_a + clear_b;

    assert_eq!(decrypted_result, clear_result);

Decryption.

Finally, the client gets the decrypted results by computing:

    let decrypted_result: u8 = result.decrypt(&client_key);

Improving performance.

TFHE-rs includes the possibility to leverage the high number of threads given by a GPU. To do so, the configuration should be updated with Rust let config = ConfigBuilder::with_custom_parameters(PARAM_MULTI_BIT_MESSAGE_2_CARRY_2_GROUP_3_KS_PBS, None).build(); The complete example becomes:

use tfhe::{ConfigBuilder, set_server_key, FheUint8, ClientKey, CompressedServerKey};
use tfhe::prelude::*;
use tfhe::shortint::parameters::PARAM_MULTI_BIT_MESSAGE_2_CARRY_2_GROUP_3_KS_PBS;

fn main() {

    let config = ConfigBuilder::with_custom_parameters(PARAM_MULTI_BIT_MESSAGE_2_CARRY_2_GROUP_3_KS_PBS, None).build();

    let client_key= ClientKey::generate(config);
    let compressed_server_key = CompressedServerKey::new(&client_key);

    let gpu_key = compressed_server_key.decompress_to_gpu();

    let clear_a = 27u8;
    let clear_b = 128u8;

    let a = FheUint8::encrypt(clear_a, &client_key);
    let b = FheUint8::encrypt(clear_b, &client_key);

    //Server-side

    set_server_key(gpu_key);
    let result = a + b;

    //Client-side
    let decrypted_result: u8 = result.decrypt(&client_key);

    let clear_result = clear_a + clear_b;

    assert_eq!(decrypted_result, clear_result);
}

List of available operations

The GPU backend includes the following operations:

name

symbol

Enc/Enc

Enc/ Int

Neg

-

✔️

N/A

Add

+

✔️

✔️

Sub

-

✔️

✔️

Mul

*

✔️

✔️

Div

/

✖️

✖️

Rem

%

✖️

✖️

Not

!

✔️

N/A

BitAnd

&

✔️

✔️

BitOr

|

✔️

✔️

BitXor

^

✔️

✔️

Shr

>>

✖️

✔️

Shl

<<

✖️

✔️

Rotate right

rotate_right

✖️

✔️

Rotate left

rotate_left

✖️

✔️

Min

min

✔️

✔️

Max

max

✔️

✔️

Greater than

gt

✔️

✔️

Greater or equal than

ge

✔️

✔️

Lower than

lt

✔️

✔️

Lower or equal than

le

✔️

✔️

Equal

eq

✔️

✔️

Cast (into dest type)

cast_into

✖️

N/A

Cast (from src type)

cast_from

✖️

N/A

Ternary operator

if_then_else

✔️

✖️

All operations follow the same syntax than the one described in here.

Benchmarks

The tables below contain benchmarks for homomorphic operations running on a single V100 from AWS (p3.2xlarge machines), with the default parameters:

Operation \ Size
FheUint8
FheUint16
FheUint32
FheUint64
FheUint128
FheUint256

cuda_add

103.33 ms

129.26 ms

156.83 ms

186.99 ms

320.96 ms

528.15 ms

cuda_bitand

26.11 ms

26.21 ms

26.63 ms

27.24 ms

43.07 ms

65.01 ms

cuda_bitor

26.1 ms

26.21 ms

26.57 ms

27.23 ms

43.05 ms

65.0 ms

cuda_bitxor

26.08 ms

26.21 ms

26.57 ms

27.25 ms

43.06 ms

65.07 ms

cuda_eq

52.82 ms

53.0 ms

79.4 ms

79.58 ms

96.37 ms

145.25 ms

cuda_ge

104.7 ms

130.23 ms

156.19 ms

183.2 ms

213.43 ms

288.76 ms

cuda_gt

104.93 ms

130.2 ms

156.33 ms

183.38 ms

213.47 ms

288.8 ms

cuda_le

105.14 ms

130.47 ms

156.48 ms

183.44 ms

213.33 ms

288.75 ms

cuda_lt

104.73 ms

130.23 ms

156.2 ms

183.14 ms

213.33 ms

288.74 ms

cuda_max

156.7 ms

182.65 ms

210.74 ms

251.78 ms

316.9 ms

442.71 ms

cuda_min

156.85 ms

182.67 ms

210.39 ms

252.02 ms

316.96 ms

442.95 ms

cuda_mul

219.73 ms

302.11 ms

465.91 ms

955.66 ms

2.71 s

9.15 s

cuda_ne

52.72 ms

52.91 ms

79.28 ms

79.59 ms

96.37 ms

145.36 ms

cuda_neg

103.26 ms

129.4 ms

157.19 ms

187.09 ms

321.27 ms

530.11 ms

cuda_sub

103.34 ms

129.42 ms

156.87 ms

187.01 ms

321.04 ms

528.13 ms

Last updated