TFHE-rs
WebsiteLibrariesProduct & ServicesDevelopersSupport
0.4
0.4
  • What is TFHE-rs?
  • Getting Started
    • Installation
    • Quick Start
    • Types & Operations
    • Benchmarks
    • Security and Cryptography
  • Tutorials
    • Homomorphic Parity Bit
    • Homomorphic Case Changing on Ascii String
  • How To
    • Configure Rust
    • Serialize/Deserialize
    • Migrate Data to Newer Versions of TFHE-rs
    • Compress Ciphertexts/Keys
    • Use Public Key Encryption
    • Use Trivial Ciphertext
    • Generic Function Bounds
    • Use Parallelized PBS
    • Use the C API
    • Use the JS on WASM API
  • Fine-grained APIs
    • Quick Start
    • Boolean
      • Operations
      • Cryptographic Parameters
      • Serialization/Deserialization
    • Shortint
      • Operations
      • Cryptographic Parameters
      • Serialization/Deserialization
    • Integer
      • Operations
      • Cryptographic Parameters
      • Serialization/Deserialization
  • Application Tutorials
    • SHA256 with Boolean API
    • Dark Market with Integer API
    • Homomorphic Regular Expressions Integer API
  • Crypto Core API [Advanced users]
    • Quick Start
    • Tutorial
  • Developers
    • Contributing
  • API references
    • docs.rs
Powered by GitBook

Libraries

  • TFHE-rs
  • Concrete
  • Concrete ML
  • fhEVM

Developers

  • Blog
  • Documentation
  • Github
  • FHE resources

Company

  • About
  • Introduction to FHE
  • Media
  • Careers
On this page
  • Default parameters
  • User-defined parameters

Was this helpful?

Export as PDF
  1. Fine-grained APIs
  2. Boolean

Cryptographic Parameters

PreviousOperationsNextSerialization/Deserialization

Last updated 1 year ago

Was this helpful?

Default parameters

The TFHE cryptographic scheme relies on a variant of and is based on a problem so difficult that it is even post-quantum resistant.

Some cryptographic parameters will require tuning to ensure both the correctness of the result and the security of the computation.

To make it simpler, we've provided two sets of parameters, which ensure correct computations for a certain probability with the standard security of 128 bits. There exists an error probability due to the probabilistic nature of the encryption, which requires adding randomness (noise) following a Gaussian distribution. If this noise is too large, the decryption will not give a correct result. There is a trade-off between efficiency and correctness: generally, using a less efficient parameter set (in terms of computation time) leads to a smaller risk of having an error during homomorphic evaluation.

In the two proposed sets of parameters, the only difference lies in this error probability. The default parameter set ensures an error probability of at most 2−402^{-40}2−40 when computing a programmable bootstrapping (i.e., any gates but the not). The other one is closer to the error probability claimed in the original , namely 2−1652^{-165}2−165, but it is up-to-date regarding security requirements.

The following array summarizes this:

Parameter set
Error probability

DEFAULT_PARAMETERS

TFHE_LIB_PARAMETERS

User-defined parameters

You can also create your own set of parameters. This is an unsafe operation as failing to properly fix the parameters will result in an incorrect and/or insecure computation:

use tfhe::boolean::prelude::*;

fn main() {
// WARNING: might be insecure and/or incorrect
// You can create your own set of parameters
    let parameters = unsafe {
        BooleanParameters::new(
            LweDimension(586),
            GlweDimension(2),
            PolynomialSize(512),
            StandardDev(0.00008976167396834998),
            StandardDev(0.00000002989040792967434),
            DecompositionBaseLog(8),
            DecompositionLevelCount(2),
            DecompositionBaseLog(2),
            DecompositionLevelCount(5),
            EncryptionKeyChoice::Small,
        )
    };
}

2−402^{-40}2−40
2−1652^{-165}2−165
Regev cryptosystem
TFHE paper