Welcome to this tutorial about TFHE-rs core_crypto module!
Setting-up TFHE-rs to use the core_crypto module
To use TFHE-rs, first it has to be added as a dependency in the Cargo.toml:
tfhe = { version ="0.1.12", features = [ "x86_64-unix" ] }
Here, this enables the x86_64-unix feature to have efficient implementations of various algorithms for x86_64 CPUs on a Unix-like system. The 'unix' suffix indicates that the UnixSeeder, which uses /dev/random to generate random numbers, is actived as a fallback if no hardware number generator is available, like rdseed on x86_64 or if the Randomization Services on Apple platforms are not available. To avoid having the UnixSeeder as a potential fallback or to run on non-Unix systems (e.g., Windows), the x86_64 feature is sufficient.
For Apple Silicon, the aarch64-unix or aarch64 feature should be enabled. Note that aarch64 is not supported on Windows as it's currently missing an entropy source required to seed the CSPRNGs used in TFHE-rs.
In short: For x86_64-based machines running Unix-like OSes:
tfhe = { version ="0.1.12", features = ["x86_64-unix"] }
For Apple Silicon or aarch64-based machines running Unix-like OSes:
tfhe = { version ="0.1.12", features = ["aarch64-unix"] }
tfhe = { version ="0.1.12", features = ["x86_64"] }
Commented code to double a 2 bits message in a leveled fashion and using a PBS with the core_crypto module.
As a complete example showing the usage of some common primitives of the core_crypto APIs, the following Rust code homomorphically computes 2 * 3 using two different methods. First using a cleartext multiplication and second using a PBS.
use tfhe::core_crypto::prelude::*;pubfnmain() {// DISCLAIMER: these toy example parameters are not guaranteed to be secure or yield correct// computations// Define the parameters for a 4 bits message able to hold the doubled 2 bits messagelet small_lwe_dimension =LweDimension(742);let glwe_dimension =GlweDimension(1);let polynomial_size =PolynomialSize(2048);let lwe_modular_std_dev =StandardDev(0.000007069849454709433);let glwe_modular_std_dev =StandardDev(0.00000000000000029403601535432533);let pbs_base_log =DecompositionBaseLog(23);let pbs_level =DecompositionLevelCount(1);// Request the best seeder possible, starting with hardware entropy sources and falling back to// /dev/random on Unix systems if enabled via cargo featuresletmut boxed_seeder =new_seeder();// Get a mutable reference to the seeder as a trait object from the Box returned by new_seederlet seeder = boxed_seeder.as_mut();// Create a generator which uses a CSPRNG to generate secret keysletmut secret_generator =SecretRandomGenerator::<ActivatedRandomGenerator>::new(seeder.seed());// Create a generator which uses two CSPRNGs to generate public masks and secret encryption// noiseletmut encryption_generator =EncryptionRandomGenerator::<ActivatedRandomGenerator>::new(seeder.seed(), seeder);println!("Generating keys...");// Generate an LweSecretKey with binary coefficientslet small_lwe_sk =LweSecretKey::generate_new_binary(small_lwe_dimension, &mut secret_generator);// Generate a GlweSecretKey with binary coefficientslet glwe_sk =GlweSecretKey::generate_new_binary(glwe_dimension, polynomial_size, &mut secret_generator);// Create a copy of the GlweSecretKey re-interpreted as an LweSecretKeylet big_lwe_sk = glwe_sk.clone().into_lwe_secret_key();// Generate the bootstrapping key, we use the parallel variant for performance reasonlet std_bootstrapping_key =par_allocate_and_generate_new_lwe_bootstrap_key(&small_lwe_sk,&glwe_sk, pbs_base_log, pbs_level, glwe_modular_std_dev,&mut encryption_generator, );// Create the empty bootstrapping key in the Fourier domainletmut fourier_bsk =FourierLweBootstrapKey::new( std_bootstrapping_key.input_lwe_dimension(), std_bootstrapping_key.glwe_size(), std_bootstrapping_key.polynomial_size(), std_bootstrapping_key.decomposition_base_log(), std_bootstrapping_key.decomposition_level_count(), );// Use the conversion function (a memory optimized version also exists but is more complicated// to use) to convert the standard bootstrapping key to the Fourier domainconvert_standard_lwe_bootstrap_key_to_fourier(&std_bootstrapping_key, &mut fourier_bsk);// We don't need the standard bootstrapping key anymoredrop(std_bootstrapping_key);// Our 4 bits message spacelet message_modulus =1u64<<4;// Our input messagelet input_message =3u64;// Delta used to encode 4 bits of message + a bit of padding on u64let delta = (1_u64<<63) / message_modulus;// Apply our encodinglet plaintext =Plaintext(input_message * delta);// Allocate a new LweCiphertext and encrypt our plaintextlet lwe_ciphertext_in:LweCiphertextOwned<u64> =allocate_and_encrypt_new_lwe_ciphertext(&small_lwe_sk, plaintext, lwe_modular_std_dev,&mut encryption_generator, );// Compute a cleartext multiplication by 2letmut cleartext_multiplication_ct = lwe_ciphertext_in.clone();println!("Performing cleartext multiplication...");lwe_ciphertext_cleartext_mul(&mut cleartext_multiplication_ct,&lwe_ciphertext_in,Cleartext(2), );// Decrypt the cleartext multiplication resultlet cleartext_multiplication_plaintext:Plaintext<u64> =decrypt_lwe_ciphertext(&small_lwe_sk, &cleartext_multiplication_ct);// Create a SignedDecomposer to perform the rounding of the decrypted plaintext// We pass a DecompositionBaseLog of 5 and a DecompositionLevelCount of 1 indicating we want to// round the 5 MSB, 1 bit of padding plus our 4 bits of messagelet signed_decomposer =SignedDecomposer::new(DecompositionBaseLog(5), DecompositionLevelCount(1));// Round and remove our encodinglet cleartext_multiplication_result:u64= signed_decomposer.closest_representable(cleartext_multiplication_plaintext.0) / delta;println!("Checking result...");assert_eq!(6, cleartext_multiplication_result);println!("Cleartext multiplication result is correct! \ Expected 6, got {cleartext_multiplication_result}" );// Now we will use a PBS to compute the same multiplication, it is NOT the recommended way of// doing this operation in terms of performance as it's much more costly than a multiplication// with a cleartext, however it resets the noise in a ciphertext to a nominal level and allows// to evaluate arbitrary functions so depending on your use case it can be a better fit.// Here we will define a helper function to generate an accumulator for a PBSfngenerate_accumulator<F>( polynomial_size:PolynomialSize, glwe_size:GlweSize, message_modulus:usize, delta:u64, f:F, ) ->GlweCiphertextOwned<u64>whereF:Fn(u64) ->u64, {// N/(p/2) = size of each block, to correct noise from the input we introduce the notion of// box, which manages redundancy to yield a denoised value for several noisy values around// a true input value.let box_size = polynomial_size.0/ message_modulus;// Create the accumulatorletmut accumulator_u64 =vec![0_u64; polynomial_size.0];// Fill each box with the encoded denoised valuefor i in0..message_modulus {let index = i * box_size; accumulator_u64[index..index + box_size].iter_mut().for_each(|a|*a =f(i asu64) * delta); }let half_box_size = box_size /2;// Negate the first half_box_size coefficients to manage negacyclicity and rotatefor a_i in accumulator_u64[0..half_box_size].iter_mut() {*a_i = (*a_i).wrapping_neg(); }// Rotate the accumulator accumulator_u64.rotate_left(half_box_size);let accumulator_plaintext =PlaintextList::from_container(accumulator_u64);let accumulator =allocate_and_trivially_encrypt_new_glwe_ciphertext(glwe_size, &accumulator_plaintext); accumulator }// Generate the accumulator for our multiplication by 2 using a simple closurelet accumulator:GlweCiphertextOwned<u64> =generate_accumulator( polynomial_size, glwe_dimension.to_glwe_size(), message_modulus asusize, delta,|x:u64|2* x, );// Allocate the LweCiphertext to store the result of the PBSletmut pbs_multiplication_ct =LweCiphertext::new(0u64, big_lwe_sk.lwe_dimension().to_lwe_size());println!("Computing PBS...");programmable_bootstrap_lwe_ciphertext(&lwe_ciphertext_in,&mut pbs_multiplication_ct,&accumulator,&fourier_bsk, );// Decrypt the PBS multiplication resultlet pbs_multipliation_plaintext:Plaintext<u64> =decrypt_lwe_ciphertext(&big_lwe_sk, &pbs_multiplication_ct);// Round and remove our encodinglet pbs_multiplication_result:u64= signed_decomposer.closest_representable(pbs_multipliation_plaintext.0) / delta;println!("Checking result...");assert_eq!(6, pbs_multiplication_result);println!("Mulitplication via PBS result is correct! Expected 6, got {pbs_multiplication_result}" );}