Production Deployment
Concrete-ML provides functionality to deploy FHE machine learning models in a client/server setting. The deployment workflow and model serving pattern is as follows:
Deployment
The diagram above shows the steps that a developer goes through to prepare a model for encrypted inference in a client/server setting. The training of the model and its compilation to FHE are performed on a development machine. Three different files are created when saving the model:
client.zip
containsclient.specs.json
which lists the secure cryptographic parameters needed for the client to generate private and evaluation keys.serialized_processing.json
describes the pre-processing and post-processing required by the machine learning model, such as quantization parameters to quantize the input and de-quantize the output. It should be deployed in the same way asclient.zip
.server.zip
contains the compiled model. This file is sufficient to run the model on a server. The compiled model is machine-architecture specific (i.e. a model compiled on x86 cannot run on ARM).
The compiled model (server.zip
) is deployed to a server and the cryptographic parameters (client.zip
), along with the model metadata (serialized_processing.json
), are shared with the clients. In some settings, such as a phone application, the client.zip
can be directly deployed on the client device and the server does not need to host it.
Serving
The client-side deployment of a secured inference machine learning model follows the schema above. First, the client obtains the cryptographic parameters (stored in client.zip
) and generates a private encryption/decryption key as well as a set of public evaluation keys. The public evaluation keys are then sent to the server, while the secret key remains on the client.
The private data is then encrypted by the client as described in serialized_processing.json
, and it is then sent to the server. Server-side, the FHE model inference is run on encrypted inputs using the public evaluation keys.
The encrypted result is then returned by the server to the client, which decrypts it using its private key. Finally, the client performs any necessary post-processing of the decrypted result as specified in serialized_processing.json
.
The server-side implementation of a Concrete-ML model follows the diagram above. The public evaluation keys sent by clients are stored. They are then retrieved for the client that is querying the service and used to evaluate the machine learning model stored in server.zip
. Finally, the server sends the encrypted result of the computation back to the client.
Example notebook
For a complete example, see the client-server notebook.
Last updated