Concrete ML
WebsiteLibrariesProducts & ServicesDevelopersSupport
0.6
0.6
  • What is Concrete ML?
  • Getting Started
    • Installation
    • Key Concepts
    • Inference in the Cloud
    • Demos and Tutorials
  • Built-in Models
    • Linear Models
    • Tree-based Models
    • Neural Networks
    • Pandas
    • Built-in Model Examples
  • Deep Learning
    • Using Torch
    • Using ONNX
    • Step-by-step Guide
    • Deep Learning Examples
    • Debugging Models
  • Advanced topics
    • Quantization
    • Pruning
    • Compilation
    • Production Deployment
    • Advanced Features
  • Developer Guide
    • Workflow
      • Set Up the Project
      • Set Up Docker
      • Documentation
      • Support and Issues
      • Contributing
    • Inner Workings
      • Importing ONNX
      • Quantization Tools
      • FHE Op-graph Design
      • External Libraries
    • API
      • concrete.ml.common.check_inputs.md
      • concrete.ml.common.debugging.custom_assert.md
      • concrete.ml.common.debugging.md
      • concrete.ml.common.md
      • concrete.ml.common.utils.md
      • concrete.ml.deployment.fhe_client_server.md
      • concrete.ml.deployment.md
      • concrete.ml.onnx.convert.md
      • concrete.ml.onnx.md
      • concrete.ml.onnx.onnx_impl_utils.md
      • concrete.ml.onnx.onnx_model_manipulations.md
      • concrete.ml.onnx.onnx_utils.md
      • concrete.ml.onnx.ops_impl.md
      • concrete.ml.pytest.md
      • concrete.ml.pytest.torch_models.md
      • concrete.ml.pytest.utils.md
      • concrete.ml.quantization.base_quantized_op.md
      • concrete.ml.quantization.md
      • concrete.ml.quantization.post_training.md
      • concrete.ml.quantization.quantized_module.md
      • concrete.ml.quantization.quantized_ops.md
      • concrete.ml.quantization.quantizers.md
      • concrete.ml.sklearn.base.md
      • concrete.ml.sklearn.glm.md
      • concrete.ml.sklearn.linear_model.md
      • concrete.ml.sklearn.md
      • concrete.ml.sklearn.protocols.md
      • concrete.ml.sklearn.qnn.md
      • concrete.ml.sklearn.rf.md
      • concrete.ml.sklearn.svm.md
      • concrete.ml.sklearn.torch_modules.md
      • concrete.ml.sklearn.tree.md
      • concrete.ml.sklearn.tree_to_numpy.md
      • concrete.ml.sklearn.xgb.md
      • concrete.ml.torch.compile.md
      • concrete.ml.torch.md
      • concrete.ml.torch.numpy_module.md
      • concrete.ml.version.md
Powered by GitBook

Libraries

  • TFHE-rs
  • Concrete
  • Concrete ML
  • fhEVM

Developers

  • Blog
  • Documentation
  • Github
  • FHE resources

Company

  • About
  • Introduction to FHE
  • Media
  • Careers
On this page
  • module concrete.ml.sklearn.glm
  • class PoissonRegressor
  • class GammaRegressor
  • class TweedieRegressor

Was this helpful?

Export as PDF
  1. Developer Guide
  2. API

concrete.ml.sklearn.glm.md

Previousconcrete.ml.sklearn.base.mdNextconcrete.ml.sklearn.linear_model.md

Last updated 2 years ago

Was this helpful?

module concrete.ml.sklearn.glm

Implement sklearn's Generalized Linear Models (GLM).


class PoissonRegressor

A Poisson regression model with FHE.

Parameters:

  • n_bits (int, Dict[str, int]): Number of bits to quantize the model. If an int is passed for n_bits, the value will be used for quantizing inputs and weights. If a dict is passed, then it should contain "op_inputs" and "op_weights" as keys with corresponding number of quantization bits so that: - op_inputs : number of bits to quantize the input values - op_weights: number of bits to quantize the learned parameters Default to 8.

For more details on PoissonRegressor please refer to the scikit-learn documentation: https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.PoissonRegressor.html

method __init__

__init__(
    n_bits: 'Union[int, dict]' = 8,
    alpha: 'float' = 1.0,
    fit_intercept: 'bool' = True,
    max_iter: 'int' = 100,
    tol: 'float' = 0.0001,
    warm_start: 'bool' = False,
    verbose: 'int' = 0
)

method post_processing

post_processing(
    y_preds: 'ndarray',
    already_dequantized: 'bool' = False
) → ndarray

Post-processing the predictions.

Args:

  • y_preds (numpy.ndarray): The predictions to post-process.

  • already_dequantized (bool): Whether the inputs were already dequantized or not. Default to False.

Returns:

  • numpy.ndarray: The post-processed predictions.


method predict

predict(X: 'ndarray', execute_in_fhe: 'bool' = False) → ndarray

Predict on user data.

Predict on user data using either the quantized clear model, implemented with tensors, or, if execute_in_fhe is set, using the compiled FHE circuit.

Args:

  • X (numpy.ndarray): The input data.

  • execute_in_fhe (bool): Whether to execute the inference in FHE. Default to False.

Returns:

  • numpy.ndarray: The model's predictions.


class GammaRegressor

A Gamma regression model with FHE.

Parameters:

  • n_bits (int, Dict[str, int]): Number of bits to quantize the model. If an int is passed for n_bits, the value will be used for quantizing inputs and weights. If a dict is passed, then it should contain "op_inputs" and "op_weights" as keys with corresponding number of quantization bits so that: - op_inputs : number of bits to quantize the input values - op_weights: number of bits to quantize the learned parameters Default to 8.

For more details on GammaRegressor please refer to the scikit-learn documentation: https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.GammaRegressor.html

method __init__

__init__(
    n_bits: 'Union[int, dict]' = 8,
    alpha: 'float' = 1.0,
    fit_intercept: 'bool' = True,
    max_iter: 'int' = 100,
    tol: 'float' = 0.0001,
    warm_start: 'bool' = False,
    verbose: 'int' = 0
)

method post_processing

post_processing(
    y_preds: 'ndarray',
    already_dequantized: 'bool' = False
) → ndarray

Post-processing the predictions.

Args:

  • y_preds (numpy.ndarray): The predictions to post-process.

  • already_dequantized (bool): Whether the inputs were already dequantized or not. Default to False.

Returns:

  • numpy.ndarray: The post-processed predictions.


method predict

predict(X: 'ndarray', execute_in_fhe: 'bool' = False) → ndarray

Predict on user data.

Predict on user data using either the quantized clear model, implemented with tensors, or, if execute_in_fhe is set, using the compiled FHE circuit.

Args:

  • X (numpy.ndarray): The input data.

  • execute_in_fhe (bool): Whether to execute the inference in FHE. Default to False.

Returns:

  • numpy.ndarray: The model's predictions.


class TweedieRegressor

A Tweedie regression model with FHE.

Parameters:

  • n_bits (int, Dict[str, int]): Number of bits to quantize the model. If an int is passed for n_bits, the value will be used for quantizing inputs and weights. If a dict is passed, then it should contain "op_inputs" and "op_weights" as keys with corresponding number of quantization bits so that: - op_inputs : number of bits to quantize the input values - op_weights: number of bits to quantize the learned parameters Default to 8.

For more details on TweedieRegressor please refer to the scikit-learn documentation: https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.TweedieRegressor.html

method __init__

__init__(
    n_bits: 'Union[int, dict]' = 8,
    power: 'float' = 0.0,
    alpha: 'float' = 1.0,
    fit_intercept: 'bool' = True,
    link: 'str' = 'auto',
    max_iter: 'int' = 100,
    tol: 'float' = 0.0001,
    warm_start: 'bool' = False,
    verbose: 'int' = 0
)

method post_processing

post_processing(
    y_preds: 'ndarray',
    already_dequantized: 'bool' = False
) → ndarray

Post-processing the predictions.

Args:

  • y_preds (numpy.ndarray): The predictions to post-process.

  • already_dequantized (bool): Whether the inputs were already dequantized or not. Default to False.

Returns:

  • numpy.ndarray: The post-processed predictions.


method predict

predict(X: 'ndarray', execute_in_fhe: 'bool' = False) → ndarray

Predict on user data.

Predict on user data using either the quantized clear model, implemented with tensors, or, if execute_in_fhe is set, using the compiled FHE circuit.

Args:

  • X (numpy.ndarray): The input data.

  • execute_in_fhe (bool): Whether to execute the inference in FHE. Default to False.

Returns:

  • numpy.ndarray: The model's predictions.