Concrete ML
WebsiteLibrariesProducts & ServicesDevelopersSupport
1.5
1.5
  • Welcome
  • Getting Started
    • What is Concrete ML?
    • Installation
    • Key concepts
    • Inference in the cloud
  • Built-in Models
    • Linear models
    • Tree-based models
    • Neural networks
    • Nearest neighbors
    • Encrypted dataframe
    • Encrypted training
  • Deep Learning
    • Using Torch
    • Using ONNX
    • Step-by-step guide
    • Debugging models
    • Optimizing inference
  • Guides
    • Prediction with FHE
    • Production deployment
    • Hybrid models
    • Serialization
  • Tutorials
    • See all tutorials
    • Built-in model examples
    • Deep learning examples
  • References
    • API
    • Pandas support
  • Explanations
    • Quantization
    • Pruning
    • Compilation
    • Advanced features
    • Project architecture
      • Importing ONNX
      • Quantization tools
      • FHE Op-graph design
      • External libraries
  • Developers
    • Set up the project
    • Set up Docker
    • Documentation
    • Support and issues
    • Contributing
    • Support new ONNX node
    • Release note
    • Feature request
    • Bug report
Powered by GitBook

Libraries

  • TFHE-rs
  • Concrete
  • Concrete ML
  • fhEVM

Developers

  • Blog
  • Documentation
  • Github
  • FHE resources

Company

  • About
  • Introduction to FHE
  • Media
  • Careers
On this page
  • Pre-trained models
  • Quantization parameters
  • Example
  • Loading a pre-trained model

Was this helpful?

Export as PDF
  1. Built-in Models

Linear models

PreviousInference in the cloudNextTree-based models

Last updated 1 year ago

Was this helpful?

Concrete ML provides several of the most popular linear models for regression and classification that can be found in :

Concrete ML
scikit-learn

Using these models in FHE is extremely similar to what can be done with scikit-learn's , making it easy for data scientists who have used this framework to get started with Concrete ML.

Models are also compatible with some of scikit-learn's main workflows, such as Pipeline() and GridSearch().

Pre-trained models

It is possible to convert an already trained scikit-learn linear model to a Concrete ML one by using the method. See . This functionality is only available for linear models.

Quantization parameters

The n_bits parameter controls the bit-width of the inputs and weights of the linear models. When non-linear mapping is applied by the model, such as exp or sigmoid, Concrete ML applies it on the client-side, on clear-text values that are the decrypted output of the linear part of the model. Thus, Linear Models do not use table lookups, and can, therefore, use high precision integers for weight and inputs.

The n_bits parameter can be set to 8 or more bits for models with up to 300 input dimensions. When the input has more dimensions, n_bits must be reduced to 6-7. All performance metrics are preserved down to n_bits=6, compared to the non-quantized float models from scikit-learn.

Example

from sklearn.datasets import make_classification
from sklearn.model_selection import train_test_split

from concrete.ml.sklearn import LogisticRegression

# Create the data for classification:
X, y = make_classification(
    n_features=30,
    n_redundant=0,
    n_informative=2,
    random_state=2,
    n_clusters_per_class=1,
    n_samples=250,
)

# Retrieve train and test sets:
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.4, random_state=42)

# Instantiate the model:
model = LogisticRegression(n_bits=8)

# Fit the model:
model.fit(X_train, y_train)

# Evaluate the model on the test set in clear:
y_pred_clear = model.predict(X_test)

# Compile the model:
model.compile(X_train)

# Perform the inference in FHE:
y_pred_fhe = model.predict(X_test, fhe="execute")

# Assert that FHE predictions are the same as the clear predictions:
print(
    f"{(y_pred_fhe == y_pred_clear).sum()} examples over {len(y_pred_fhe)} "
    "have an FHE inference equal to the clear inference."
)

# Output:
#  100 examples over 100 have an FHE inference equal to the clear inference

The overall accuracy scores are identical (93%) between the scikit-learn model (executed in the clear) and the Concrete ML one (executed in FHE). In fact, quantization has little impact on the decision boundaries, as linear models are able to consider large precision numbers when quantizing inputs and weights in Concrete ML. Additionally, as the linear models do not use PBS, the FHE computations are always exact. This means that the FHE predictions are always identical to the quantized clear ones.

Loading a pre-trained model

An alternative to the example above is to train a scikit-learn model in a separate step and then to convert it to Concrete ML.

from sklearn.linear_model import LogisticRegression as SKlearnLogisticRegression

# Instantiate the model:
model = SKlearnLogisticRegression()

# Fit the model:
model.fit(X_train, y_train)

cml_model = LogisticRegression.from_sklearn_model(model, X_train, n_bits=8)

# Compile the model:
cml_model.compile(X_train)

# Perform the inference in FHE:
y_pred_fhe = cml_model.predict(X_test, fhe="execute")

The same quantization parameters (i.e., scale and zero-point) are applied on all features, so it can be beneficial to make all feature distribution similar by using standard or min-max normalization. For a more detailed comparison of the impact of such pre-processing please refer to .

The following snippet gives an example about training a LogisticRegression model on a simple data-set followed by inference on encrypted data with FHE. A more complete example can be found in the .

We can then plot the decision boundary of the classifier and compare those results with a scikit-learn model executed in clear. The complete code can be found in the .

the logistic regression notebook
LogisticRegression notebook
LogisticRegression notebook
scikit-learn
API
from_sklearn_model
below for an example
LinearRegression
LinearRegression
LogisticRegression
LogisticRegression
LinearSVC
LinearSVC
LinearSVR
LinearSVR
PoissonRegressor
PoissonRegressor
TweedieRegressor
TweedieRegressor
GammaRegressor
GammaRegressor
Lasso
Lasso
Ridge
Ridge
ElasticNet
ElasticNet
SGDRegressor
SGDRegressor
Sklearn model decision boundaries
FHE model decision boundarires