Concrete ML
WebsiteLibrariesProducts & ServicesDevelopersSupport
1.1
1.1
  • What is Concrete ML?
  • Getting Started
    • Installation
    • Key Concepts
    • Inference in the Cloud
    • Demos and Tutorials
  • Built-in Models
    • Linear Models
    • Tree-based Models
    • Neural Networks
    • Pandas
    • Built-in Model Examples
  • Deep Learning
    • Using Torch
    • Using ONNX
    • Step-by-step Guide
    • Deep Learning Examples
    • Debugging Models
    • Optimizing Inference
  • Advanced topics
    • Quantization
    • Pruning
    • Compilation
    • Prediction with FHE
    • Production Deployment
    • Advanced Features
    • Serialization
  • Developer Guide
    • Workflow
      • Set Up the Project
      • Set Up Docker
      • Documentation
      • Support and Issues
      • Contributing
    • Inner Workings
      • Importing ONNX
      • Quantization Tools
      • FHE Op-graph Design
      • External Libraries
    • API
      • concrete.ml.common.check_inputs.md
      • concrete.ml.common.debugging.custom_assert.md
      • concrete.ml.common.debugging.md
      • concrete.ml.common.md
      • concrete.ml.common.serialization.decoder.md
      • concrete.ml.common.serialization.dumpers.md
      • concrete.ml.common.serialization.encoder.md
      • concrete.ml.common.serialization.loaders.md
      • concrete.ml.common.serialization.md
      • concrete.ml.common.utils.md
      • concrete.ml.deployment.deploy_to_aws.md
      • concrete.ml.deployment.deploy_to_docker.md
      • concrete.ml.deployment.fhe_client_server.md
      • concrete.ml.deployment.md
      • concrete.ml.deployment.server.md
      • concrete.ml.deployment.utils.md
      • concrete.ml.onnx.convert.md
      • concrete.ml.onnx.md
      • concrete.ml.onnx.onnx_impl_utils.md
      • concrete.ml.onnx.onnx_model_manipulations.md
      • concrete.ml.onnx.onnx_utils.md
      • concrete.ml.onnx.ops_impl.md
      • concrete.ml.pytest.md
      • concrete.ml.pytest.torch_models.md
      • concrete.ml.pytest.utils.md
      • concrete.ml.quantization.base_quantized_op.md
      • concrete.ml.quantization.md
      • concrete.ml.quantization.post_training.md
      • concrete.ml.quantization.quantized_module.md
      • concrete.ml.quantization.quantized_ops.md
      • concrete.ml.quantization.quantizers.md
      • concrete.ml.search_parameters.md
      • concrete.ml.search_parameters.p_error_search.md
      • concrete.ml.sklearn.base.md
      • concrete.ml.sklearn.glm.md
      • concrete.ml.sklearn.linear_model.md
      • concrete.ml.sklearn.md
      • concrete.ml.sklearn.qnn.md
      • concrete.ml.sklearn.qnn_module.md
      • concrete.ml.sklearn.rf.md
      • concrete.ml.sklearn.svm.md
      • concrete.ml.sklearn.tree.md
      • concrete.ml.sklearn.tree_to_numpy.md
      • concrete.ml.sklearn.xgb.md
      • concrete.ml.torch.compile.md
      • concrete.ml.torch.md
      • concrete.ml.torch.numpy_module.md
      • concrete.ml.version.md
Powered by GitBook

Libraries

  • TFHE-rs
  • Concrete
  • Concrete ML
  • fhEVM

Developers

  • Blog
  • Documentation
  • Github
  • FHE resources

Company

  • About
  • Introduction to FHE
  • Media
  • Careers
On this page

Was this helpful?

Export as PDF
  1. Getting Started

Inference in the Cloud

PreviousKey ConceptsNextDemos and Tutorials

Last updated 1 year ago

Was this helpful?

Concrete ML models can be easily deployed in a client/server setting, enabling the creation of privacy-preserving services in the cloud.

As seen in the , once compiled to FHE, a Concrete ML model generates machine code that performs the inference on private data. Secret encryption keys are needed so that the user can securely encrypt their data and decrypt the inference result. An evaluation key is also needed for the server to securely process the user's encrypted data.

Keys are generated by the user once for each service they use, based on the model the service provides and its cryptographic parameters.

The overall communications protocol to enable cloud deployment of machine learning services can be summarized in the following diagram:

The steps detailed above are:

  1. The model developer deploys the compiled machine learning model to the server. This model includes the cryptographic parameters. The server is now ready to provide private inference.

  2. The client requests the cryptographic parameters (also called "client specs"). Once it receives them from the server, the secret and evaluation keys are generated.

  3. The client sends the evaluation key to the server. The server is now ready to accept requests from this client. The client sends their encrypted data.

  4. The server uses the evaluation key to securely run inference on the user's data and sends back the encrypted result.

  5. The client now decrypts the result and can send back new requests.

For more information on how to implement this basic secure inference protocol, refer to the and to the .

Production Deployment section
client/server example
concepts section