concrete.ml.sklearn.qnn_module.md
Last updated
Last updated
concrete.ml.sklearn.qnn_module
Sparse Quantized Neural Network torch module.
MAX_BITWIDTH_BACKWARD_COMPATIBLE
SparseQuantNeuralNetwork
Sparse Quantized Neural Network.
This class implements an MLP that is compatible with FHE constraints. The weights and activations are quantized to low bit-width and pruning is used to ensure accumulators do not surpass an user-provided accumulator bit-width. The number of classes and number of layers are specified by the user, as well as the breadth of the network
__init__
Sparse Quantized Neural Network constructor.
Args:
input_dim
(int): Number of dimensions of the input data.
n_layers
(int): Number of linear layers for this network.
n_outputs
(int): Number of output classes or regression targets.
n_w_bits
(int): Number of weight bits.
n_a_bits
(int): Number of activation and input bits.
n_accum_bits
(int): Maximal allowed bit-width of intermediate accumulators.
n_hidden_neurons_multiplier
(int): The number of neurons on the hidden will be the number of dimensions of the input multiplied by n_hidden_neurons_multiplier
. Note that pruning is used to adjust the accumulator size to attempt to keep the maximum accumulator bit-width to n_accum_bits
, meaning that not all hidden layer neurons will be active. The default value for n_hidden_neurons_multiplier
is chosen for small dimensions of the input. Reducing this value decreases the FHE inference time considerably but also decreases the robustness and accuracy of model training.
n_prune_neurons_percentage
(float): The percentage of neurons to prune in the hidden layers. This can be used when setting n_hidden_neurons_multiplier
with a high number (3-4), once good accuracy is obtained, in order to speed up the model in FHE.
activation_function
(Type): The activation function to use in the network (e.g., torch.ReLU, torch.SELU, torch.Sigmoid, ...).
quant_narrow
(bool): Whether this network should quantize the values using narrow range (e.g a 2-bits signed quantization uses [-1, 0, 1] instead of [-2, -1, 0, 1]).
quant_signed
(bool): Whether this network should quantize the values using signed integers.
Raises:
ValueError
: If the parameters have invalid values or the computed accumulator bit-width is zero.
enable_pruning
Enable pruning in the network. Pruning must be made permanent to recover pruned weights.
Raises:
ValueError
: If the quantization parameters are invalid.
forward
Forward pass.
Args:
x
(torch.Tensor): network input
Returns:
x
(torch.Tensor): network prediction
make_pruning_permanent
Make the learned pruning permanent in the network.
max_active_neurons
Compute the maximum number of active (non-zero weight) neurons.
The computation is done using the quantization parameters passed to the constructor. Warning: With the current quantization algorithm (asymmetric) the value returned by this function is not guaranteed to ensure FHE compatibility. For some weight distributions, weights that are 0 (which are pruned weights) will not be quantized to 0. Therefore the total number of active quantized neurons will not be equal to max_active_neurons.
Returns:
int
: The maximum number of active neurons.