We allow explicit decryption requests for any encrypted type. The values are decrypted with the network private key (the threshold decryption protocol is in the works).
The reencrypt functions takes as inputs a ciphertext and a public encryption key (namely, a NaCl box).
During reencryption, the ciphertext is decrypted using the network private key (the threshold decryption protocol is in the works). Then, the decrypted result is encrypted under the user-provided public encryption key. The result of this encryption is sent back to the caller as bytes memory
.
It is also possible to provide a default value to the reencrypt
function. In this case, if the provided ciphertext is not initialized (i.e., if the ciphertext handle is 0
), the function will return an encryption of the provided default value.
NOTE: If one of the following operations is called with an uninitialized ciphertext handle as an operand, this handle will be made to point to a trivial encryption of
0
before the operation is executed.
In the example above (balanceOf
), this view function need to validate the user to prevent anyone to reencrypt any user's balance. To prevent this, the user provides a signature of the given public key. The best way to do it is to use EIP-712 standard. Since this is something very useful, fhEVM library provide an abstract to use in your contract:
When a contract uses EIP712WithModifier
abstract, a modifier is available to check user signature.
This signature can be generated on client side using fhevmjs library.