Only this pageAll pages
Powered by GitBook
1 of 51

2.3

Loading...

Getting Started

Loading...

Loading...

Loading...

Loading...

Loading...

Loading...

Loading...

Tutorials

Loading...

Loading...

Loading...

Loading...

Loading...

Loading...

Loading...

Loading...

Loading...

Loading...

Loading...

Loading...

Loading...

Application Tutorials

Loading...

Loading...

How To

Loading...

Loading...

Loading...

Loading...

Loading...

Loading...

Explanations

Loading...

Loading...

Loading...

Loading...

Loading...

Loading...

Loading...

Loading...

Loading...

Loading...

Loading...

Loading...

Developer

Loading...

Loading...

Loading...

Loading...

What is Concrete?

Concrete is an open source framework which simplifies the use of Fully Homomorphic Encryption (FHE).

FHE is a powerful cryptographic tool, allowing computation to be performed directly on encrypted data without needing to decrypt it. With FHE, you can build services that preserve privacy for all users. FHE also offers ideal protection against data breaches as everything is done on encrypted data. Even if the server is compromised, no sensitive data is leaked.

Organization of this documentation

This documentation is split into several sections:

  • Getting Started gives you the basics,

  • Tutorials provides essential examples on various features of the library,

  • How to helps you perform specific tasks,

  • Developer explains the inner workings of the library and everything related to contributing to the project.

Looking for support? Ask our team!

How is Concrete different from Concrete Numpy?

Concrete Numpy was the former name of the Python frontend of the Concrete Compiler. Concrete Compiler is now open source, and the package name is updated from concrete-numpy to concrete-python (as concrete is already booked for a non FHE-related project).

How is it different from the previous version of Concrete?

📁 | 💛 | 🟨

Since writing FHE programs is a difficult task, Concrete framework contains a TFHE Compiler based on to make this process easier for developers.

Support forum: (we answer in less than 24 hours).

Live discussion on the FHE.org discord server: (inside the #concrete channel).

Do you have a question about Zama? Write us on or send us an email at: hello@zama.ai

Users from Concrete Numpy can safely update to Concrete, with a few required changes, as explained in the .

Before v1.0, Concrete was a set of Rust libraries implementing Zama's variant of TFHE. Starting with v1, Concrete is now Zama's TFHE Compiler framework only. The Rust library is now called .

Github
Community support
Zama Bounty Program
LLVM
https://community.zama.ai
https://discord.fhe.org
Twitter
upgrading document
TFHE-rs

Quick Start

To compute on encrypted data, you first need to define the function you want to compute, then compile it into a Concrete Circuit, which you can use to perform homomorphic evaluation.

Here is the full example that we will walk through:

from concrete import fhe

def add(x, y):
    return x + y

compiler = fhe.Compiler(add, {"x": "encrypted", "y": "clear"})

inputset = [(2, 3), (0, 0), (1, 6), (7, 7), (7, 1)]
circuit = compiler.compile(inputset)

x = 4
y = 4

clear_evaluation = add(x, y)
homomorphic_evaluation = circuit.encrypt_run_decrypt(x, y)

print(x, "+", y, "=", clear_evaluation, "=", homomorphic_evaluation)

Importing the library

Everything you need to perform homomorphic evaluation is included in a single module:

from concrete import fhe

Defining the function to compile

In this example, we compile a simple addition function:

def add(x, y):
    return x + y

Creating a compiler

To compile the function, you need to create a Compiler by specifying the function to compile and the encryption status of its inputs:

compiler = fhe.Compiler(add, {"x": "encrypted", "y": "clear"})

Defining an inputset

An inputset is a collection representing the typical inputs to the function. It is used to determine the bit widths and shapes of the variables within the function.

It should be in iterable, yielding tuples, of the same length as the number of arguments of the function being compiled:

inputset = [(2, 3), (0, 0), (1, 6), (7, 7), (7, 1)]

All inputs in the inputset will be evaluated in the graph, which takes time. If you're experiencing long compilation times, consider providing a smaller inputset.

Compiling the function

You can use the compile method of a Compiler class with an inputset to perform the compilation and get the resulting circuit back:

circuit = compiler.compile(inputset)

Performing homomorphic evaluation

You can use the encrypt_run_decrypt method of a Circuit class to perform homomorphic evaluation:

homomorphic_evaluation = circuit.encrypt_run_decrypt(4, 4)

circuit.encrypt_run_decrypt(*args) is just a convenient way to do everything at once. It is implemented as circuit.decrypt(circuit.run(circuit.encrypt(*args))).

Installation

Concrete is natively supported on Linux and macOS from Python 3.8 to 3.11 inclusive. If you have Docker in your platform, you can use the docker image to use Concrete.

Using PyPI

You can install Concrete from PyPI:

pip install -U pip wheel setuptools
pip install concrete-python

Using Docker

You can also get the Concrete docker image:

docker pull zamafhe/concrete-python:v2.0.0
docker run --rm -it zamafhe/concrete-python:latest /bin/bash

Basics of FHE programs

Operations on encrypted values

Noise and Bootstrap

FHE encrypts data as LWE ciphertexts. These ciphertexts can be visually represented as a bit vector with the encrypted message in the higher-order (yellow) bits as well as a random part (gray), that guarantees the security of the encrypted message, called noise.

Under the hood, each time you perform an operation on an encrypted value, the noise grows and at a certain point, it may overlap with the message and corrupt its value.

There is a way to decrease the noise of a ciphertext with the Bootstrap operation. The bootstrap operation takes as input a noisy ciphertext and generates a new ciphertext encrypting the same message, but with a lower noise. This allows additional operations to be performed on the encrypted message.

A typical FHE program will be made up of a series of operations followed by a Bootstrap, this is then repeated many times.

Probability of Error

The amount of noise in a ciphertext is not as bounded as it may appear in the above illustration. As the errors are drawn randomly from a Gaussian distribution, they can be of varying size. This means that we need to be careful to ensure the noise terms do not effect the message bits. If the error terms do overflow into the message bits, this can cause an incorrect output (failure) when bootstrapping.

Function evaluation

So far, we only introduced arithmetic operations but a typical program usually also involves functions (maximum, minimum, square root…)

During the Bootstrap operation, in TFHE, you could perform a table lookup simultaneously to reduce noise, turning the Bootstrap operation into a Programmable Bootstrap (PBS).

Concrete uses the PBS to support function evaluation:

Let's take a simple example. A function (or circuit) that takes a 4 bits input variable and output the maximum value between a clear constant and the encrypted input:

example:

import numpy as np

def encrypted_max(x: uint4):
    return np.maximum(5, x)

could be turned into a table lookup:

def encrypted_max(x: uint4):
    lut = [5, 5, 5, 5, 5, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15]
    return lut[x]

The Lookup table lut being applied during the Programmable Bootstrap.

PBS management

You should not worry about PBS, they are completely managed by Concrete during the compilation process. Each function evaluation will be turned into a Lookup table and evaluated by a PBS.

See this in action with the previous example, if you dump the MLIR code produced by the frontend, you will see (forget about MLIR syntax, just see the Lookup table value on the 4th line):

module {
  func.func @main(%arg0: !FHE.eint<4>) -> !FHE.eint<4> {
    %cst = arith.constant dense<[5, 5, 5, 5, 5, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15]> : tensor<16xi64>
    %0 = "FHE.apply_lookup_table"(%arg0, %cst) : (!FHE.eint<4>, tensor<16xi64>) -> !FHE.eint<4>
    return %0 : !FHE.eint<4>
  }
}

The only thing you should keep in mind is that it adds a constraint on the input type, and that is the reason behind having a maximum bit-width supported in Concrete.

Second takeaway is that PBS are the most costly operations in FHE, the less PBS in your circuit the faster it will run. It is an interesting metrics to optimize (you will see that Concrete could give you the number of PBS used in your circuit).

Note also that PBS cost varies with the input variable precision (a circuit with 8 bit PBS will run faster than one with 16 bits PBS).

Development Workflow

Allowing computation on encrypted data is particularly interesting in the client/server model, especially when the client data are sensitive and the server not trusted. You could split the workflow in two main steps: development and deployment.

Development

During development, you will turn your program into its FHE equivalent. Concrete automates this task with the compilation process but you can make this process even easier by reducing the precision required, reducing the number of PBSs or allowing more parallelization in your code (e.g. working on bit chunks instead of high bit-width variables).

Once happy with the code, the development process is over and you will create the compiler artifact that will be used during deployment.

Deployment

A typical Concrete deployment will host on a server the compilation artifact: Client specifications required by the compiled circuits and the fhe executable itself. Client will ask for the circuit requirements, generate keys accordingly, then it will send an encrypted payload and receive an encrypted result.

Terminology and Structure

Terminology

Some terms used throughout the project include:

  • computation graph: A data structure to represent a computation. This is basically a directed acyclic graph in which nodes are either inputs, constants, or operations on other nodes.

  • tracing: A technique that takes a Python function from the user and generates a corresponding computation graph.

  • bounds: Before computation graphs are converted to MLIR, we need to know which value should have which type (e.g., uint3 vs int5). We use inputsets for this purpose. We simulate the graph with the inputs in the inputset to remember the minimum and the maximum value for each node, which is what we call bounds, and use bounds to determine the appropriate type for each node.

  • circuit: The result of compilation. A circuit is made of the client and server components. It has methods for everything from printing to evaluation.

Module structure

In this section, we briefly discuss the module structure of Concrete Python. You are encouraged to check individual .py files to learn more.

  • concrete

    • fhe

      • dtypes: data type specifications (e.g., int4, uint5, float32)

      • values: value specifications (i.e., data type + shape + encryption status)

      • representation: representation of computation (e.g., computation graphs, nodes)

      • tracing: tracing of python functions

      • mlir: computation graph to mlir conversion

      • compilation: configuration, compiler, artifacts, circuit, client/server, and anything else related to compilation

Compatibility

Supported operations

Here are the operations you can use inside the function you are compiling:

Some of these operations are not supported between two encrypted values. A detailed error will be raised if you try to do something that is not supported.

Supported Python operators.

Supported NumPy functions.

Supported ndarray methods.

Supported ndarray properties.

Limitations

Control flow constraints.

Some Python control flow statements are not supported. You cannot have an if statement or a while statement for which the condition depends on an encrypted value. However, such statements are supported with constant values (e.g., for i in range(SOME_CONSTANT), if os.environ.get("SOME_FEATURE") == "ON":).

Type constraints.

You cannot have floating-point inputs or floating-point outputs. You can have floating-point intermediate values as long as they can be converted to an integer Table Lookup (e.g., (60 * np.sin(x)).astype(np.int64)).

Bit width constraints.

There is a limit on the bit width of encrypted values. We are constantly working on increasing this bit width. If you go above the limit, you will get an error.

Progressbar

Big circuits can take a long time to execute, and waiting for execution to finish without having any indication of its progress can be frustrating. For this reason, progressbar feature is introduced:

import time

import matplotlib.pyplot as plt
import numpy as np
import randimage
from concrete import fhe

configuration = fhe.Configuration(
    enable_unsafe_features=True,
    use_insecure_key_cache=True,
    insecure_key_cache_location=".keys",

    # To enable displaying progressbar
    show_progress=True,
    # To enable showing tags in the progressbar (does not work in notebooks)
    progress_tag=True,
    # To give a title to the progressbar
    progress_title="Evaluation:",
)

@fhe.compiler({"image": "encrypted"})
def to_grayscale(image):
    with fhe.tag("scaling.r"):
        r = image[:, :, 0]
        r = (r * 0.30).astype(np.int64)

    with fhe.tag("scaling.g"):
        g = image[:, :, 1]
        g = (g * 0.59).astype(np.int64)

    with fhe.tag("scaling.b"):
        b = image[:, :, 2]
        b = (b * 0.11).astype(np.int64)

    with fhe.tag("combining.rgb"):
        gray = r + g + b
        
    with fhe.tag("creating.result"):
        gray = np.expand_dims(gray, axis=2)
        result = np.concatenate((gray, gray, gray), axis=2)
    
    return result

image_size = (16, 16)
image_data = (randimage.get_random_image(image_size) * 255).round().astype(np.int64)

print()

print(f"Compilation started @ {time.strftime('%H:%M:%S', time.localtime())}")
start = time.time()
inputset = [np.random.randint(0, 256, size=image_data.shape) for _ in range(100)]
circuit = to_grayscale.compile(inputset, configuration)
end = time.time()
print(f"(took {end - start:.3f} seconds)")

print()

print(f"Key generation started @ {time.strftime('%H:%M:%S', time.localtime())}")
start = time.time()
circuit.keygen()
end = time.time()
print(f"(took {end - start:.3f} seconds)")

print()

print(f"Evaluation started @ {time.strftime('%H:%M:%S', time.localtime())}")
start = time.time()
grayscale_image_data = circuit.encrypt_run_decrypt(image_data)
end = time.time()
print(f"(took {end - start:.3f} seconds)")

fig, axs = plt.subplots(1, 2)
axs = axs.flatten()

axs[0].set_title("Original")
axs[0].imshow(image_data)
axs[0].axis("off")

axs[1].set_title("Grayscale")
axs[1].imshow(grayscale_image_data)
axs[1].axis("off")

plt.show()

When you run this code, you will see a progressbar like:

Evaluation:  10% |█████.............................................|  10% (scaling.r)
^^^^^^^^^^^  ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ ^^^^^^^^^^^
Title        Progressbar                                                   Tag

And as the circuit progresses, this progressbar would fill:

Evaluation:  30% |███████████████...................................|  30% (scaling.g)
Evaluation:  50% |█████████████████████████.........................|  50% (scaling.b)

It is not a uniform progressbar. For example, when the progressbar shows 50%, this does not mean that half of the execution is performed in terms of seconds. Instead, it means that half of the nodes in the graph have been calculated. Since different node types can take a different amount of time, this should not be used to get an ETA.

Once the progressbar fills and execution completes, you will see the following figure:

Performance

One of the most common operations in Concrete is Table Lookups (TLUs). All operations except addition, subtraction, multiplication with non-encrypted values, tensor manipulation operations, and a few operations built with those primitive operations (e.g. matmul, conv) are converted to Table Lookups under the hood:

is exactly the same as

Table Lookups are very flexible. They allow Concrete to support many operations, but they are expensive. The exact cost depends on many variables (hardware used, error probability, etc.), but they are always much more expensive compared to other operations. You should try to avoid them as much as possible. It's not always possible to avoid them completely, but you might remove the number of TLUs or replace some of them with other primitive operations.

Concrete automatically parallelizes TLUs if they are applied to tensors.

Tagging

When you have big circuits, keeping track of which node corresponds to which part of your code becomes difficult. A tagging system can simplify such situations:

When you compile f with inputset of range(10), you get the following graph:

If you get an error, you'll see exactly where the error occurred (e.g., which layer of the neural network, if you tag layers).

In the future, we plan to use tags for additional features (e.g., to measure performance of tagged regions), so it's a good idea to start utilizing them for big circuits.

Decorator

If you are trying to compile a regular function, you can use the decorator interface instead of the explicit Compiler interface to simplify your code:

This decorator is a way to add the compile method to the function object without changing its name elsewhere.

Exactness

One of the most common operations in Concrete is Table Lookups (TLUs). TLUs are performed with an FHE operation called Programmable Bootstrapping (PBS). PBS's have a certain probability of error, which, when triggered, result in inaccurate results.

Let's say you have the table:

And you perform a Table Lookup using 4. The result you should get is lut[4] = 16, but because of the possibility of error, you could get any other value in the table.

The probability of this error can be configured through the p_error and global_p_error configuration options. The difference between these two options is that, p_error is for individual TLUs but global_p_error is for the whole circuit.

If you set p_error to 0.01, for example, it means every TLU in the circuit will have a 99% chance of being exact with a 1% probability of error. If you have a single TLU in the circuit, global_p_error would be 1% as well. But if you have 2 TLUs for example, global_p_error would be almost 2% (1 - (0.99 * 0.99)).

However, if you set global_p_error to 0.01, the whole circuit will have 1% probability of error, no matter how many Table Lookups are included.

If you set both of them, both will be satisfied. Essentially, the stricter one will be used.

By default, both p_error and global_p_error is set to None, which results in a global_p_error of 1 / 100_000 being used.

Configuring either of those variables impacts computation time (compilation, keys generation, circuit execution) and space requirements (size of the keys on disk and in memory). Lower error probabilities would result in longer computation times and larger space requirements.

Extensions

Concrete supports native Python and NumPy operations as much as possible, but not everything in Python or NumPy is available. Therefore, we provide some extensions ourselves to improve your experience.

fhe.univariate(function)

Allows you to wrap any univariate function into a single table lookup:

The wrapped function:

  • shouldn't have any side effects (e.g., no modification of global state)

  • should be deterministic (e.g., no random numbers)

  • should have the same output shape as its input (i.e., output.shape should be the same with input.shape)

  • each output element should correspond to a single input element (e.g., output[0] should only depend on input[0])

If any of these constraints are violated, the outcome is undefined.

fhe.conv(...)

Only 2D convolutions without padding and with one group are currently supported.

fhe.maxpool(...)

Only 2D maxpooling without padding and up to 15-bits is currently supported.

fhe.array(...)

Allows you to create encrypted arrays:

Currently, only scalars can be used to create arrays.

fhe.zero()

Allows you to create an encrypted scalar zero:

fhe.zeros(shape)

Allows you to create an encrypted tensor of zeros:

fhe.one()

Allows you to create an encrypted scalar one:

fhe.ones(shape)

Allows you to create an encrypted tensor of ones:

fhe.hint(value, **kwargs)

Allows you to hint properties of a value. Imagine you have this circuit:

You'd expect all of a, b, and c to be 8-bits, but because inputset is very small, this code could print:

The first solution in these cases should be to use a bigger inputset, but it can still be tricky to solve with the inputset. That's where hint extension comes into play. Hints are a way to provide extra information to compilation process:

  • Bit-width hints are for constraining the minimum number of bits in the encoded the value. If you hint a value to be 8-bits, it means it should be at least uint8 or int8.

To fix f using hints, you can do:

Hints are only applied to the value being hinted, and no other value. If you want the hint to be applied to multiple values, you need to hint all of them.

you'll always see:

regardless of the bounds.

Formatting

You can convert your compiled circuit into its textual representation by converting it to string:

If you just want to see the output on your terminal, you can directly print it as well:

Comparisons

Comparisons are not native operations in Concrete, so they need to be implemented using existing native operations (i.e., additions, clear multiplications, negations, table lookups). Concrete offers three different implementations for performing comparisons.

Chunked

This is the most general implementation that can be used in any situation. The idea is:

Notes

  • Signed comparisons are a bit more complex to explain, but they are supported!

  • Optimal chunk size is selected automatically to reduce the number of table lookups.

  • Chunked comparisons result in at least 5 and at most 13 table lookups.

  • It is used if no other implementation can be used.

  • == and != is using a different chunk comparison and reduction strategy with less table lookups.

Pros

  • Can be used with any integers.

Cons

  • Very expensive.

Example

produces

Subtraction Trick

This implementation uses the fact that x [<,<=,==,!=,>=,>] y is equal to x - y [<,<=,==,!=,>=,>] 0, which is just a subtraction and a table lookup!

There are two major problems with this implementation though:

  1. subtraction before the TLU requires up to 2 additional bits to avoid overflows (it is 1 in most cases).

  2. subtraction requires the same bit-width across operands.

What this means is if we are comparing uint3 and uint6, we need to convert both of them to uint7 in some way to do the subtraction and proceed with the TLU in 7-bits. There are 4 ways to achieve this behavior.

Requirements

1. fhe.ComparisonStrategy.ONE_TLU_PROMOTED

This strategy makes sure that during bit-width assignment, both operands are assigned the same bit-width, and that bit-width contains at least the amount of bits required to store x - y. The idea is:

Pros

  • It will always result in a single table lookup.

Cons

  • It will increase the bit-width of both operands and lock them to each other across the whole circuit, which can result in significant slowdowns if the operands are used in other costly operations.

Example

produces

2. fhe.ComparisonStrategy.THREE_TLU_CASTED

This strategy will not put any constraint in bit-widths during bit-width assignment, instead operands are cast to a bit-width that can store x - y during runtime using table lookups. The idea is:

Notes

  • It can result in a single table lookup as well, if x and y are assigned (because of other operations) the same bit-width, and that bit-width can store x - y.

  • Or in two table lookups if only one of the operands is assigned a bit-width bigger than or equal to the bit width that can store x - y.

Pros

  • It will not put any constraints on bit-widths of the operands, which is amazing if they are used in other costly operations.

  • It will result in at most 3 table lookups, which is still good.

Cons

  • If you are not doing anything else with the operands, or doing less costly operations compared to comparison, it will introduce up to two unnecessary table lookups and slow down execution compared to fhe.ComparisonStrategy.ONE_TLU_PROMOTED.

Example

produces

3. fhe.ComparisonStrategy.TWO_TLU_BIGGER_PROMOTED_SMALLER_CASTED

This strategy is like the middle ground between the two strategies described above. With this strategy, only the bigger operand will be constrained to have at least the required bit-width to store x - y, and the smaller operand will be cast to that bit-width during runtime. The idea is:

Notes

  • It can result in a single table lookup as well, if the smaller operand is assigned (because of other operations) the same bit-width as the bigger operand.

Pros

  • It will only put constraint on the bigger operand, which is great if the smaller operand is used in other costly operations.

  • It will result in at most 2 table lookups, which is great.

Cons

  • It will increase the bit-width of the bigger operand which can result in significant slowdowns if the bigger operand is used in other costly operations.

  • If you are not doing anything else with the smaller operand, or doing less costly operations compared to comparison, it could introduce an unnecessary table lookup and slow down execution compared to fhe.ComparisonStrategy.THREE_TLU_CASTED.

Example

produces

4. fhe.ComparisonStrategy.TWO_TLU_BIGGER_CASTED_SMALLER_PROMOTED

This strategy is like the exact opposite of the strategy above. With this, only the smaller operand will be constrained to have at least the required bit-width, and the bigger operand will be cast during runtime. The idea is:

Notes

  • It can result in a single table lookup as well, if the bigger operand is assigned (because of other operations) the same bit-width as the smaller operand.

Pros

  • It will only put constraint on the smaller operand, which is great if the bigger operand is used in other costly operations.

  • It will result in at most 2 table lookups, which is great.

Cons

  • It will increase the bit-width of the smaller operand which can result in significant slowdowns if the smaller operand is used in other costly operations.

  • If you are not doing anything else with the bigger operand, or doing less costly operations compared to comparison, it could introduce an unnecessary table lookup and slow down execution compared to fhe.ComparisonStrategy.THREE_TLU_CASTED.

Example

produces

Clipping Trick

This implementation uses the fact that the subtraction trick is not optimal in terms of the required intermediate bit width. Comparison result does not change if we compare(3, 40) or compare(3, 4), so why not clipping the bigger operand and then doing the subtraction to use less bits!

There are two major problems with this implementation as well though:

  1. it can not be used when bit-widths are the same (for some cases even when they differ by only one bit)

  2. subtraction still requires the same bit-width across operands.

What this means is if we are comparing uint3 and uint6, we need to convert both of them to uint4 in some way to do the subtraction and proceed with the TLU in 7-bits. There are 2 ways to achieve this behavior.

Requirements

1. fhe.ComparisonStrategy.THREE_TLU_BIGGER_CLIPPED_SMALLER_CASTED

This strategy will not put any constraint in bit-widths during bit-width assignment, instead the smaller operand is cast to a bit-width that can store clipped(bigger) - smaller or smaller - clipped(bigger) during runtime using table lookups. The idea is:

Notes

  • This is a fallback implementation, so if there is a difference of 1-bit (or in some cases 2-bits) and subtraction trick cannot be used optimally, this implementation will be used instead of fhe.ComparisonStrategy.CHUNKED.

  • It can result in two table lookups if the smaller operand is assigned a bit-width bigger than or equal to the bit width that can store clipped(bigger) - smaller or smaller - clipped(bigger).

Pros

  • It will not put any constraints on bit-widths of the operands, which is amazing if they are used in other costly operations.

  • It will result in at most 3 table lookups, which is still good.

  • And those table lookups will be on smaller bit-widths, which is great.

Cons

  • Cannot be used to compare integers with the same bit-width, which is very common.

Example

produces

2. fhe.ComparisonStrategy.TWO_TLU_BIGGER_CLIPPED_SMALLER_PROMOTED

This strategy is similar to the strategy described above. The difference is that with this strategy, the smaller operand will be constrained to have at least the required bit-width to store clipped(bigger) - smaller or smaller - clipped(bigger). The bigger operand will still be clipped to that bit-width during runtime. The idea is:

Pros

  • It will only put constraint on the smaller operand, which is great if the bigger operand is used in other costly operations.

  • It will result in exactly 2 table lookups, which is great.

Cons

  • It will increase the bit-width of the bigger operand which can result in significant slowdowns if the bigger operand is used in other costly operations.

Example

produces

Summary

Concrete will choose the best strategy available after bit-width assignment, regardless of the specified preference.

Different strategies are good for different circuits. If you want the best runtime for your use case, you can compile your circuit with all different comparison strategy preferences, and pick the one with the lowest complexity.

The idea of homomorphic encryption is that you can compute on ciphertexts without knowing the messages they encrypt. A scheme is said to be , if an unlimited number of additions and multiplications are supported (xxx is a plaintext and E[x]E[x]E[x] is the corresponding ciphertext):

homomorphic addition: E[x]+E[y]=E[x+y]E[x] + E[y] = E[x + y]E[x]+E[y]=E[x+y]

homomorphic multiplication: E[x]∗E[y]=E[x∗y]E[x] * E[y] = E[x * y]E[x]∗E[y]=E[x∗y]

The default failure probability in Concrete is set for the whole program and is 1100000\frac{1}{100000}1000001​ by default. This means that 1 execution of every 100,000 may result in an incorrect output. To have a lower probability of error, you need to change the cryptographic parameters, likely resulting in worse performance. On the other side of this trade-off, allowing a higher probability of error will likely speed-up operations.

homomorphic univariate function evaluation: f(E[x])=E[f(x)]f(E[x]) = E[f(x)]f(E[x])=E[f(x)]

For more information on deployment, see

extensions: custom functionality (see )

Feel free to play with these configuration options to pick the one best suited for your needs! See to learn how you can set a custom p_error and/or global_p_error.

Allows you to perform a convolution operation, with the same semantic as :

Allows you to perform a maxpool operation, with the same semantic as :

Formatting is just for debugging purposes. It's not possible to create the circuit back from its textual representation. See if that's your goal.

Strategy
Minimum # of TLUs
Maximum # of TLUs
Can increase the bit-width of the inputs
Howto - Deploy
Extensions
__abs__
__add__
__and__
__eq__
__floordiv__
__ge__
__getitem__
__gt__
__invert__
__le__
__lshift__
__lt__
__matmul__
__mod__
__mul__
__ne__
__neg__
__or__
__pos__
__pow__
__radd__
__rand__
__rfloordiv__
__rlshift__
__rmatmul__
__rmod__
__rmul__
__ror__
__round__
__rpow__
__rrshift__
__rshift__
__rsub__
__rtruediv__
__rxor__
__sub__
__truediv__
__xor__
np.absolute
np.add
np.arccos
np.arccosh
np.arcsin
np.arcsinh
np.arctan
np.arctan2
np.arctanh
np.around
np.bitwise_and
np.bitwise_or
np.bitwise_xor
np.broadcast_to
np.cbrt
np.ceil
np.clip
np.concatenate
np.copysign
np.cos
np.cosh
np.deg2rad
np.degrees
np.dot
np.equal
np.exp
np.exp2
np.expand_dims
np.expm1
np.fabs
np.float_power
np.floor
np.floor_divide
np.fmax
np.fmin
np.fmod
np.gcd
np.greater
np.greater_equal
np.heaviside
np.hypot
np.invert
np.isfinite
np.isinf
np.isnan
np.lcm
np.ldexp
np.left_shift
np.less
np.less_equal
np.log
np.log10
np.log1p
np.log2
np.logaddexp
np.logaddexp2
np.logical_and
np.logical_not
np.logical_or
np.logical_xor
np.matmul
np.maximum
np.minimum
np.multiply
np.negative
np.nextafter
np.not_equal
np.ones_like
np.positive
np.power
np.rad2deg
np.radians
np.reciprocal
np.remainder
np.reshape
np.right_shift
np.rint
np.round_
np.sign
np.signbit
np.sin
np.sinh
np.spacing
np.sqrt
np.square
np.subtract
np.sum
np.tan
np.tanh
np.transpose
np.true_divide
np.trunc
np.where
np.zeros_like
np.ndarray.astype
np.ndarray.clip
np.ndarray.dot
np.ndarray.flatten
np.ndarray.reshape
np.ndarray.transpose
np.ndarray.shape
np.ndarray.ndim
np.ndarray.size
np.ndarray.T
from concrete import fhe

@fhe.compiler({"x": "encrypted"})
def f(x):
    return x ** 2

inputset = range(2 ** 4)
circuit = f.compile(inputset)
from concrete import fhe

table = fhe.LookupTable([x ** 2 for x in range(2 ** 4)])

@fhe.compiler({"x": "encrypted"})
def f(x):
    return table[x]

inputset = range(2 ** 4)
circuit = f.compile(inputset)
def g(z):
    with fhe.tag("def"):
        a = 120 - z
        b = a // 4
    return b


def f(x):
    with fhe.tag("abc"):
        x = x * 2
        with fhe.tag("foo"):
            y = x + 42
        z = np.sqrt(y).astype(np.int64)

    return g(z + 3) * 2
 %0 = x                            # EncryptedScalar<uint4>        ∈ [0, 9]
 %1 = 2                            # ClearScalar<uint2>            ∈ [2, 2]            @ abc
 %2 = multiply(%0, %1)             # EncryptedScalar<uint5>        ∈ [0, 18]           @ abc
 %3 = 42                           # ClearScalar<uint6>            ∈ [42, 42]          @ abc.foo
 %4 = add(%2, %3)                  # EncryptedScalar<uint6>        ∈ [42, 60]          @ abc.foo
 %5 = subgraph(%4)                 # EncryptedScalar<uint3>        ∈ [6, 7]            @ abc
 %6 = 3                            # ClearScalar<uint2>            ∈ [3, 3]
 %7 = add(%5, %6)                  # EncryptedScalar<uint4>        ∈ [9, 10]
 %8 = 120                          # ClearScalar<uint7>            ∈ [120, 120]        @ def
 %9 = subtract(%8, %7)             # EncryptedScalar<uint7>        ∈ [110, 111]        @ def
%10 = 4                            # ClearScalar<uint3>            ∈ [4, 4]            @ def
%11 = floor_divide(%9, %10)        # EncryptedScalar<uint5>        ∈ [27, 27]          @ def
%12 = 2                            # ClearScalar<uint2>            ∈ [2, 2]
%13 = multiply(%11, %12)           # EncryptedScalar<uint6>        ∈ [54, 54]
return %13

Subgraphs:

    %5 = subgraph(%4):

        %0 = input                         # EncryptedScalar<uint2>          @ abc.foo
        %1 = sqrt(%0)                      # EncryptedScalar<float64>        @ abc
        %2 = astype(%1, dtype=int_)        # EncryptedScalar<uint1>          @ abc
        return %2
from concrete import fhe

@fhe.compiler({"x": "encrypted"})
def f(x):
    return x + 42

inputset = range(10)
circuit = f.compile(inputset)

assert circuit.encrypt_run_decrypt(10) == f(10)
lut = [0, 1, 4, 9, 16, 25, 36, 49, 64]
import numpy as np
from concrete import fhe

def complex_univariate_function(x):

    def per_element(element):
        result = 0
        for i in range(element):
            result += i
        return result

    return np.vectorize(per_element)(x)

@fhe.compiler({"x": "encrypted"})
def f(x):
    return fhe.univariate(complex_univariate_function)(x)

inputset = [np.random.randint(0, 5, size=(3, 2)) for _ in range(10)]
circuit = f.compile(inputset)

sample = np.array([
    [0, 4],
    [2, 1],
    [3, 0],
])
assert np.array_equal(circuit.encrypt_run_decrypt(sample), complex_univariate_function(sample))
import numpy as np
from concrete import fhe

weight = np.array([[2, 1], [3, 2]]).reshape(1, 1, 2, 2)

@fhe.compiler({"x": "encrypted"})
def f(x):
    return fhe.conv(x, weight, strides=(2, 2), dilations=(1, 1), group=1)

inputset = [np.random.randint(0, 4, size=(1, 1, 4, 4)) for _ in range(10)]
circuit = f.compile(inputset)

sample = np.array(
    [
        [3, 2, 1, 0],
        [3, 2, 1, 0],
        [3, 2, 1, 0],
        [3, 2, 1, 0],
    ]
).reshape(1, 1, 4, 4)
assert np.array_equal(circuit.encrypt_run_decrypt(sample), f(sample))
import numpy as np
from concrete import fhe

@fhe.compiler({"x": "encrypted"})
def f(x):
    return fhe.maxpool(x, kernel_shape=(2, 2), strides=(2, 2), dilations=(1, 1))

inputset = [np.random.randint(0, 4, size=(1, 1, 4, 4)) for _ in range(10)]
circuit = f.compile(inputset)

sample = np.array(
    [
        [3, 2, 1, 0],
        [3, 2, 1, 0],
        [3, 2, 1, 0],
        [3, 2, 1, 0],
    ]
).reshape(1, 1, 4, 4)
assert np.array_equal(circuit.encrypt_run_decrypt(sample), f(sample))
import numpy as np
from concrete import fhe

@fhe.compiler({"x": "encrypted", "y": "encrypted"})
def f(x, y):
    return fhe.array([x, y])

inputset = [(3, 2), (7, 0), (0, 7), (4, 2)]
circuit = f.compile(inputset)

sample = (3, 4)
assert np.array_equal(circuit.encrypt_run_decrypt(*sample), f(*sample))
from concrete import fhe
import numpy as np

@fhe.compiler({"x": "encrypted"})
def f(x):
    z = fhe.zero()
    return x + z

inputset = range(10)
circuit = f.compile(inputset)

for x in range(10):
    assert circuit.encrypt_run_decrypt(x) == x
from concrete import fhe
import numpy as np

@fhe.compiler({"x": "encrypted"})
def f(x):
    z = fhe.zeros((2, 3))
    return x + z

inputset = range(10)
circuit = f.compile(inputset)

for x in range(10):
    assert np.array_equal(circuit.encrypt_run_decrypt(x), np.array([[x, x, x], [x, x, x]]))
from concrete import fhe
import numpy as np

@fhe.compiler({"x": "encrypted"})
def f(x):
    z = fhe.one()
    return x + z

inputset = range(10)
circuit = f.compile(inputset)

for x in range(10):
    assert circuit.encrypt_run_decrypt(x) == x + 1
from concrete import fhe
import numpy as np

@fhe.compiler({"x": "encrypted"})
def f(x):
    z = fhe.ones((2, 3))
    return x + z

inputset = range(10)
circuit = f.compile(inputset)

for x in range(10):
    assert np.array_equal(circuit.encrypt_run_decrypt(x), np.array([[x, x, x], [x, x, x]]) + 1)
from concrete import fhe
import numpy as np

@fhe.compiler({"x": "encrypted"})
def f(x, y, z):
    a = x | y
    b = y & z
    c = a ^ b
    return c

inputset = [
    (np.random.randint(0, 2**8), np.random.randint(0, 2**8), np.random.randint(0, 2**8))
    for _ in range(3)
]
circuit = f.compile(inputset)

print(circuit)
%0 = x                          # EncryptedScalar<uint8>        ∈ [173, 240]
%1 = y                          # EncryptedScalar<uint8>        ∈ [52, 219]
%2 = z                          # EncryptedScalar<uint8>        ∈ [36, 252]
%3 = bitwise_or(%0, %1)         # EncryptedScalar<uint8>        ∈ [243, 255]
%4 = bitwise_and(%1, %2)        # EncryptedScalar<uint7>        ∈ [0, 112] 
                                                  ^^^^^ this can lead to bugs
%5 = bitwise_xor(%3, %4)        # EncryptedScalar<uint8>        ∈ [131, 255]
return %5
@fhe.compiler({"x": "encrypted", "y": "encrypted", "z": "encrypted"})
def f(x, y, z):
    # hint that inputs should be considered at least 8-bits
    x = fhe.hint(x, bit_width=8)
    y = fhe.hint(y, bit_width=8)
    z = fhe.hint(z, bit_width=8)

    # hint that intermediates should be considered at least 8-bits
    a = fhe.hint(x | y, bit_width=8)
    b = fhe.hint(y & z, bit_width=8)
    c = fhe.hint(a ^ b, bit_width=8)

    return c
%0 = x                          # EncryptedScalar<uint8>        ∈ [...]
%1 = y                          # EncryptedScalar<uint8>        ∈ [...]
%2 = z                          # EncryptedScalar<uint8>        ∈ [...]
%3 = bitwise_or(%0, %1)         # EncryptedScalar<uint8>        ∈ [...]
%4 = bitwise_and(%1, %2)        # EncryptedScalar<uint8>        ∈ [...] 
%5 = bitwise_xor(%3, %4)        # EncryptedScalar<uint8>        ∈ [...]
return %5
str(circuit)
print(circuit)
# (example below is for bit-width of 8 and chunk size of 4)

# extract chunks of lhs using table lookups
lhs_chunks = [lhs.bits[0:4], lhs.bits[4:8]]

# extract chunks of rhs using table lookups
rhs_chunks = [rhs.bits[0:4], rhs.bits[4:8]]

# pack chunks of lhs and rhs using clear multiplications and additions 
packed_chunks = []
for lhs_chunk, rhs_chunk in zip(lhs_chunks, rhs_chunks):
    shifted_lhs_chunk = lhs_chunk * 2**4  # (i.e., lhs_chunk << 4)
    packed_chunks.append(shifted_lhs_chunk + rhs_chunk)

# apply comparison table lookup to packed chunks
comparison_table = fhe.LookupTable([...])
chunk_comparisons = comparison_table[packed_chunks]

# reduce chunk comparisons to comparison of numbers
result = chunk_comparisons[0]
for chunk_comparison in chunk_comparisons[1:]:
    chunk_reduction_table = fhe.LookupTable([...])
    shifted_chunk_comparison= chunk_comparison * 2**2  # (i.e., lhs_chunk << 2)
    result = chunk_reduction_table[result + shifted_chunk_comparison]
import numpy as np
from concrete import fhe

def f(x, y):
    return x < y

inputset = [
    (np.random.randint(0, 2**4), np.random.randint(0, 2**4))
    for _ in range(100)
]

compiler = fhe.Compiler(f, {"x": "encrypted", "y": "encrypted"})
circuit = compiler.compile(inputset, show_mlir=True)
module {
  func.func @main(%arg0: !FHE.eint<4>, %arg1: !FHE.eint<4>) -> !FHE.eint<1> {
  
    // extracting the first chunk of x, adjusted for shifting
    %cst = arith.constant dense<[0, 0, 0, 0, 4, 4, 4, 4, 8, 8, 8, 8, 12, 12, 12, 12]> : tensor<16xi64>
    %0 = "FHE.apply_lookup_table"(%arg0, %cst) : (!FHE.eint<4>, tensor<16xi64>) -> !FHE.eint<4>
    
    // extracting the first chunk of y
    %cst_0 = arith.constant dense<[0, 0, 0, 0, 1, 1, 1, 1, 2, 2, 2, 2, 3, 3, 3, 3]> : tensor<16xi64>
    %1 = "FHE.apply_lookup_table"(%arg1, %cst_0) : (!FHE.eint<4>, tensor<16xi64>) -> !FHE.eint<4>
    
    // packing first chunks
    %2 = "FHE.add_eint"(%0, %1) : (!FHE.eint<4>, !FHE.eint<4>) -> !FHE.eint<4>
    
    // comparing first chunks
    %cst_1 = arith.constant dense<[0, 1, 1, 1, 2, 0, 1, 1, 2, 2, 0, 1, 2, 2, 2, 0]> : tensor<16xi64>
    %3 = "FHE.apply_lookup_table"(%2, %cst_1) : (!FHE.eint<4>, tensor<16xi64>) -> !FHE.eint<4>
    
    // extracting the second chunk of x, adjusted for shifting
    %cst_2 = arith.constant dense<[0, 4, 8, 12, 0, 4, 8, 12, 0, 4, 8, 12, 0, 4, 8, 12]> : tensor<16xi64>
    %4 = "FHE.apply_lookup_table"(%arg0, %cst_2) : (!FHE.eint<4>, tensor<16xi64>) -> !FHE.eint<4>
    
    // extracting the second chunk of y
    %cst_3 = arith.constant dense<[0, 1, 2, 3, 0, 1, 2, 3, 0, 1, 2, 3, 0, 1, 2, 3]> : tensor<16xi64>
    %5 = "FHE.apply_lookup_table"(%arg1, %cst_3) : (!FHE.eint<4>, tensor<16xi64>) -> !FHE.eint<4>
    
    // packing second chunks
    %6 = "FHE.add_eint"(%4, %5) : (!FHE.eint<4>, !FHE.eint<4>) -> !FHE.eint<4>
    
    // comparing second chunks
    %cst_4 = arith.constant dense<[0, 4, 4, 4, 8, 0, 4, 4, 8, 8, 0, 4, 8, 8, 8, 0]> : tensor<16xi64>
    %7 = "FHE.apply_lookup_table"(%6, %cst_4) : (!FHE.eint<4>, tensor<16xi64>) -> !FHE.eint<4>
    
    // packing comparisons
    %8 = "FHE.add_eint"(%7, %3) : (!FHE.eint<4>, !FHE.eint<4>) -> !FHE.eint<4>
    
    // reducing comparisons to result
    %cst_5 = arith.constant dense<[0, 1, 0, 0, 1, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0]> : tensor<16xi64>
    %9 = "FHE.apply_lookup_table"(%8, %cst_5) : (!FHE.eint<4>, tensor<16xi64>) -> !FHE.eint<1>
    
    return %9 : !FHE.eint<1>
    
  }
}
(x - y).bit_width <= MAXIMUM_TLU_BIT_WIDTH
comparison_lut = fhe.LookupTable([...])
result = comparison_lut[x_promoted_to_uint7 - y_promoted_to_uint7]
import numpy as np
from concrete import fhe

configuration = fhe.Configuration(
    comparison_strategy_preference=fhe.ComparisonStrategy.ONE_TLU_PROMOTED,
)

def f(x, y):
    return x < y

inputset = [
    (np.random.randint(0, 2**4), np.random.randint(0, 2**4))
    for _ in range(100)
]

compiler = fhe.Compiler(f, {"x": "encrypted", "y": "encrypted"})
circuit = compiler.compile(inputset, configuration, show_mlir=True)
module {
  // promotions          ............         ............
  func.func @main(%arg0: !FHE.eint<5>, %arg1: !FHE.eint<5>) -> !FHE.eint<1> {
    
    // subtraction
    %0 = "FHE.to_signed"(%arg0) : (!FHE.eint<5>) -> !FHE.esint<5>
    %1 = "FHE.to_signed"(%arg1) : (!FHE.eint<5>) -> !FHE.esint<5>
    %2 = "FHE.sub_eint"(%0, %1) : (!FHE.esint<5>, !FHE.esint<5>) -> !FHE.esint<5>
    
    // computing the result
    %cst = arith.constant dense<[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]> : tensor<32xi64>
    %3 = "FHE.apply_lookup_table"(%2, %cst) : (!FHE.esint<5>, tensor<32xi64>) -> !FHE.eint<1>
    
    return %3 : !FHE.eint<1>
    
  }
  
}
uint3_to_uint7_lut = fhe.LookupTable([...])
x_cast_to_uint7 = uint3_to_uint7_lut[x]

uint6_to_uint7_lut = fhe.LookupTable([...])
y_cast_to_uint7 = uint6_to_uint7_lut[y]

comparison_lut = fhe.LookupTable([...])
result = comparison_lut[x_cast_to_uint7 - y_cast_to_uint7]
import numpy as np
from concrete import fhe

configuration = fhe.Configuration(
    comparison_strategy_preference=fhe.ComparisonStrategy.THREE_TLU_CASTED,
)

def f(x, y):
    return x < y

inputset = [
    (np.random.randint(0, 2**4), np.random.randint(0, 2**4))
    for _ in range(100)
]

compiler = fhe.Compiler(f, {"x": "encrypted", "y": "encrypted"})
circuit = compiler.compile(inputset, configuration, show_mlir=True)
module {
  
  // no promotions
  func.func @main(%arg0: !FHE.eint<3>, %arg1: !FHE.eint<6>) -> !FHE.eint<1> {
    
    // casting
    %cst = arith.constant dense<[0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15]> : tensor<16xi64>
    %0 = "FHE.apply_lookup_table"(%arg0, %cst) : (!FHE.eint<4>, tensor<16xi64>) -> !FHE.esint<5>
    %1 = "FHE.apply_lookup_table"(%arg1, %cst) : (!FHE.eint<4>, tensor<16xi64>) -> !FHE.esint<5>
    
    // subtraction
    %2 = "FHE.sub_eint"(%0, %1) : (!FHE.esint<5>, !FHE.esint<5>) -> !FHE.esint<5>
    
    // computing the result
    %cst_0 = arith.constant dense<[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]> : tensor<32xi64>
    %3 = "FHE.apply_lookup_table"(%2, %cst_0) : (!FHE.esint<5>, tensor<32xi64>) -> !FHE.eint<1>
    
    return %3 : !FHE.eint<1>
    
  }
  
}
uint3_to_uint7_lut = fhe.LookupTable([...])
x_cast_to_uint7 = uint3_to_uint7_lut[x]

comparison_lut = fhe.LookupTable([...])
result = comparison_lut[x_cast_to_uint7 - y_promoted_to_uint7]
import numpy as np
from concrete import fhe

configuration = fhe.Configuration(
    comparison_strategy_preference=fhe.ComparisonStrategy.TWO_TLU_BIGGER_PROMOTED_SMALLER_CASTED,
)

def f(x, y):
    return x < y

inputset = [
    (np.random.randint(0, 2**3), np.random.randint(0, 2**5))
    for _ in range(100)
]

compiler = fhe.Compiler(f, {"x": "encrypted", "y": "encrypted"})
circuit = compiler.compile(inputset, configuration, show_mlir=True)
module {
  
  // promotions                               ............
  func.func @main(%arg0: !FHE.eint<3>, %arg1: !FHE.eint<6>) -> !FHE.eint<1> {
    
    // casting the smaller operand
    %cst = arith.constant dense<[0, 1, 2, 3, 4, 5, 6, 7]> : tensor<8xi64>
    %0 = "FHE.apply_lookup_table"(%arg0, %cst) : (!FHE.eint<3>, tensor<8xi64>) -> !FHE.esint<6>
    
    // subtraction
    %1 = "FHE.to_signed"(%arg1) : (!FHE.eint<6>) -> !FHE.esint<6>
    %2 = "FHE.sub_eint"(%0, %1) : (!FHE.esint<6>, !FHE.esint<6>) -> !FHE.esint<6>
    
    // computing the result
    %cst_0 = arith.constant dense<[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]> : tensor<64xi64>
    %3 = "FHE.apply_lookup_table"(%2, %cst_0) : (!FHE.esint<6>, tensor<64xi64>) -> !FHE.eint<1>
    
    return %3 : !FHE.eint<1>
    
  }
  
}
uint6_to_uint7_lut = fhe.LookupTable([...])
y_cast_to_uint7 = uint6_to_uint7_lut[y]

comparison_lut = fhe.LookupTable([...])
result = comparison_lut[x_promoted_to_uint7 - y_cast_to_uint7]
import numpy as np
from concrete import fhe

configuration = fhe.Configuration(
    comparison_strategy_preference=fhe.ComparisonStrategy.TWO_TLU_BIGGER_PROMOTED_SMALLER_CASTED,
)

def f(x, y):
    return x < y

inputset = [
    (np.random.randint(0, 2**3), np.random.randint(0, 2**5))
    for _ in range(100)
]

compiler = fhe.Compiler(f, {"x": "encrypted", "y": "encrypted"})
circuit = compiler.compile(inputset, configuration, show_mlir=True)
module {
  
  // promotions          ............
  func.func @main(%arg0: !FHE.eint<6>, %arg1: !FHE.eint<5>) -> !FHE.eint<1> {
    
    // casting the bigger operand
    %cst = arith.constant dense<[0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31]> : tensor<32xi64>
    %0 = "FHE.apply_lookup_table"(%arg1, %cst) : (!FHE.eint<5>, tensor<32xi64>) -> !FHE.esint<6>
    
    // subtraction
    %1 = "FHE.to_signed"(%arg0) : (!FHE.eint<6>) -> !FHE.esint<6>
    %2 = "FHE.sub_eint"(%1, %0) : (!FHE.esint<6>, !FHE.esint<6>) -> !FHE.esint<6>
    
    // computing the result
    %cst_0 = arith.constant dense<[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]> : tensor<64xi64>
    %3 = "FHE.apply_lookup_table"(%2, %cst_0) : (!FHE.esint<6>, tensor<64xi64>) -> !FHE.eint<1>
    
    return %3 : !FHE.eint<1>
    
  }
  
}
x.bit_width != y.bit_width
smaller = x if x.bit_width < y.bit_width else y
bigger = x if x.bit_width > y.bit_width else y
clipped = lambda value: np.clip(value, smaller.min() - 1, smaller.max() + 1)
any(
    (
        bit_width <= MAXIMUM_TLU_BIT_WIDTH and
        bit_width <= bigger.dtype.bit_width and
        bit_width > smaller.dtype.bit_width
    )
    for bit_width in [
        (smaller - clipped(bigger)).bit_width,
        (clipped(bigger) - smaller).bit_width,
    ]
  )
uint3_to_uint4_lut = fhe.LookupTable([...])
x_cast_to_uint4 = uint3_to_uint4_lut[x]

clipper = fhe.LookupTable([...])
y_clipped = clipper[y]

comparison_lut = fhe.LookupTable([...])
result = comparison_lut[x_cast_to_uint4 - y_clipped]
# or
another_comparison_lut = fhe.LookupTable([...])
result = another_comparison_lut[y_clipped - x_cast_to_uint4]
import numpy as np
from concrete import fhe

configuration = fhe.Configuration(
    comparison_strategy_preference=fhe.ComparisonStrategy.THREE_TLU_BIGGER_CLIPPED_SMALLER_CASTED
)

def f(x, y):
    return x < y

inputset = [
    (np.random.randint(0, 2**3), np.random.randint(0, 2**6))
    for _ in range(100)
]

compiler = fhe.Compiler(f, {"x": "encrypted", "y": "encrypted"})
circuit = compiler.compile(inputset, configuration, show_mlir=True)
module {
  
  // no promotions
  func.func @main(%arg0: !FHE.eint<3>, %arg1: !FHE.eint<6>) -> !FHE.eint<1> {
    
    // casting the smaller operand 
    %cst = arith.constant dense<[0, 1, 2, 3, 4, 5, 6, 7]> : tensor<8xi64>
    %0 = "FHE.apply_lookup_table"(%arg0, %cst) : (!FHE.eint<3>, tensor<8xi64>) -> !FHE.esint<4>
    
    // clipping the bigger operand
    %cst_0 = arith.constant dense<[0, 1, 2, 3, 4, 5, 6, 7, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8]> : tensor<64xi64>
    %1 = "FHE.apply_lookup_table"(%arg1, %cst_0) : (!FHE.eint<6>, tensor<64xi64>) -> !FHE.esint<4>
    
    // subtraction
    %2 = "FHE.sub_eint"(%0, %1) : (!FHE.esint<4>, !FHE.esint<4>) -> !FHE.esint<4>
    
    // computing the result
    %cst_1 = arith.constant dense<[0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1]> : tensor<16xi64>
    %3 = "FHE.apply_lookup_table"(%2, %cst_1) : (!FHE.esint<4>, tensor<16xi64>) -> !FHE.eint<1>
    
    return %3 : !FHE.eint<1>
    
  }
  
}
clipper = fhe.LookupTable([...])
y_clipped = clipper[y]

comparison_lut = fhe.LookupTable([...])
result = comparison_lut[x_promoted_to_uint4 - y_clipped]
# or
another_comparison_lut = fhe.LookupTable([...])
result = another_comparison_lut[y_clipped - x_promoted_to_uint4]
import numpy as np
from concrete import fhe

configuration = fhe.Configuration(
    comparison_strategy_preference=fhe.ComparisonStrategy.TWO_TLU_BIGGER_CLIPPED_SMALLER_PROMOTED
)

def f(x, y):
    return x < y

inputset = [
    (np.random.randint(0, 2**3), np.random.randint(0, 2**6))
    for _ in range(100)
]

compiler = fhe.Compiler(f, {"x": "encrypted", "y": "encrypted"})
circuit = compiler.compile(inputset, configuration, show_mlir=True)
module {
  
  // promotions          ............
  func.func @main(%arg0: !FHE.eint<4>, %arg1: !FHE.eint<6>) -> !FHE.eint<1> {
    
    // clipping the bigger operand
    %cst = arith.constant dense<[0, 1, 2, 3, 4, 5, 6, 7, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8]> : tensor<64xi64>
    %0 = "FHE.apply_lookup_table"(%arg1, %cst) : (!FHE.eint<6>, tensor<64xi64>) -> !FHE.esint<4>
    
    // subtraction
    %1 = "FHE.to_signed"(%arg0) : (!FHE.eint<4>) -> !FHE.esint<4>
    %2 = "FHE.sub_eint"(%1, %0) : (!FHE.esint<4>, !FHE.esint<4>) -> !FHE.esint<4>
        
    // computing the result
    %cst_0 = arith.constant dense<[0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1]> : tensor<16xi64>
    %3 = "FHE.apply_lookup_table"(%2, %cst_0) : (!FHE.esint<4>, tensor<16xi64>) -> !FHE.eint<1>
    
    return %3 : !FHE.eint<1>
    
  }
  
}

CHUNKED

5

13

ONE_TLU_PROMOTED

1

1

✓

THREE_TLU_CASTED

1

3

TWO_TLU_BIGGER_PROMOTED_SMALLER_CASTED

1

2

✓

TWO_TLU_BIGGER_CASTED_SMALLER_PROMOTED

1

2

✓

THREE_TLU_BIGGER_CLIPPED_SMALLER_CASTED

2

3

TWO_TLU_BIGGER_CLIPPED_SMALLER_PROMOTED

2

2

✓

fully homomorphic

Multi Parameters

Integers in Concrete are encrypted and processed according to a set of cryptographic parameters. By default, multiple of such parameters are selected by Concrete Optimizer. This might not be the best approach for every use case and there is the option to use mono parameters.

When multi parameters are enabled, a different set of parameters are selected for each bit-width in the circuit, which results in:

  • Faster execution (generally).

  • Slower key generation.

  • Larger keys.

  • Larger memory usage during execution.

To disable it, you can use parameter_selection_strategy=fhe.ParameterSelectionStrategy.MONO configuration option.

Floating Points

Concrete partly supports floating points. There is no support for floating point inputs or outputs. However, there is support for intermediate values to be floating points (under certain constraints).

Floating points as intermediate values

Concrete-Compile, which is used for compiling the circuit, doesn't support floating points at all. However, it supports table lookups which take an integer and map it to another integer. The constraints of this operation are that there should be a single integer input, and a single integer output.

As long as your floating point operations comply with those constraints, Concrete automatically converts them to a table lookup operation:

from concrete import fhe
import numpy as np

@fhe.compiler({"x": "encrypted"})
def f(x):
    a = x + 1.5
    b = np.sin(x)
    c = np.around(a + b)
    d = c.astype(np.int64)
    return d

inputset = range(8)
circuit = f.compile(inputset)

for x in range(8):
    assert circuit.encrypt_run_decrypt(x) == f(x)

In the example above, a, b, and c are floating point intermediates. They are used to calculate d, which is an integer with a value dependent upon x, which is also an integer. Concrete detects this and fuses all of these operations into a single table lookup from x to d.

This approach works for a variety of use cases, but it comes up short for others:

from concrete import fhe
import numpy as np

@fhe.compiler({"x": "encrypted", "y": "encrypted"})
def f(x, y):
    a = x + 1.5
    b = np.sin(y)
    c = np.around(a + b)
    d = c.astype(np.int64)
    return d

inputset = [(1, 2), (3, 0), (2, 2), (1, 3)]
circuit = f.compile(inputset)

for x in range(8):
    assert circuit.encrypt_run_decrypt(x) == f(x)

This results in:

RuntimeError: Function you are trying to compile cannot be converted to MLIR

%0 = x                             # EncryptedScalar<uint2>
%1 = 1.5                           # ClearScalar<float64>
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ only integer constants are supported
%2 = y                             # EncryptedScalar<uint2>
%3 = add(%0, %1)                   # EncryptedScalar<float64>
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ only integer operations are supported
%4 = sin(%2)                       # EncryptedScalar<float64>
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ only integer operations are supported
%5 = add(%3, %4)                   # EncryptedScalar<float64>
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ only integer operations are supported
%6 = around(%5)                    # EncryptedScalar<float64>
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ only integer operations are supported
%7 = astype(%6, dtype=int_)        # EncryptedScalar<uint3>
return %7

The reason for the error is that d no longer depends solely on x; it depends on y as well. Concrete cannot fuse these operations, so it raises an exception instead.

Multi Precision

Each integer in the circuit has a certain bit-width, which is determined by the inputset. These bit-widths can be observed when graphs are printed:

%0 = x                  # EncryptedScalar<uint3>              ∈ [0, 7]
%1 = y                  # EncryptedScalar<uint4>              ∈ [0, 15]
%2 = add(%0, %1)        # EncryptedScalar<uint5>              ∈ [2, 22]
return %2                                     ^ these are       ^^^^^^^
                                                the assigned    based on
                                                bit-widths      these bounds

However, it's not possible to add 3-bit and 4-bit numbers together because their encoding is different:

D: data
N: noise

3-bit number
------------
D2 D1 D0 0 0 0 ... 0 0 0 N N N N

4-bit number
------------
D3 D2 D1 D0 0 0 0 ... 0 0 0 N N N N

The result of such an addition is a 5-bit number, which also has a different encoding:

5-bit number
------------
D4 D3 D2 D1 D0 0 0 0 ... 0 0 0 N N N N

Because of these encoding differences, we perform a graph processing step called bit-width assignment, which takes the graph and updates the bit-widths to be compatible with FHE.

After this graph processing step, the graph would look like:

%0 = x                  # EncryptedScalar<uint5>
%1 = y                  # EncryptedScalar<uint5>
%2 = add(%0, %1)        # EncryptedScalar<uint5>
return %2

Most operations cannot change the encoding, which means that the input and output bit-widths need to be the same. However, there is an operation which can change the encoding: the table lookup operation.

Let's say you have this graph:

%0 = x                    # EncryptedScalar<uint2>        ∈ [0, 3]
%1 = y                    # EncryptedScalar<uint5>        ∈ [0, 31]
%2 = 2                    # ClearScalar<uint2>            ∈ [2, 2]
%3 = power(%0, %2)        # EncryptedScalar<uint4>        ∈ [0, 9]
%4 = add(%3, %1)          # EncryptedScalar<uint6>        ∈ [1, 39]
return %4

This is the graph for (x**2) + y where x is 2-bits and y is 5-bits. If the table lookup operation wasn't able to change the encoding, we'd need to make everything 6-bits. However, since the encoding can be changed, the bit-widths can be assigned like so:

%0 = x                    # EncryptedScalar<uint2>        ∈ [0, 3]
%1 = y                    # EncryptedScalar<uint6>        ∈ [0, 31]
%2 = 2                    # ClearScalar<uint2>            ∈ [2, 2]
%3 = power(%0, %2)        # EncryptedScalar<uint6>        ∈ [0, 9]
%4 = add(%3, %1)          # EncryptedScalar<uint6>        ∈ [1, 39]
return %4

In this case, we kept x as 2-bits, but set the table lookup result and y to be 6-bits, so that the addition can be performed.

This style of bit-width assignment is called multi-precision, and it is enabled by default. To disable it and use a single precision across the circuit, you can use the single_precision=True configuration option.

How to Configure
onnx.Conv
onnx.MaxPool
How to Deploy

Table Lookups

In this tutorial, we will review how to perform direct table lookups in Concrete.

Direct table lookup

Concrete provides a LookupTable class to create your own tables and apply them in your circuits.

LookupTables can have any number of elements. Let's call the number of elements N. As long as the lookup variable is within the range [-N, N), the Table Lookup is valid.

If you go outside of this range, you will receive the following error:

IndexError: index 10 is out of bounds for axis 0 with size 6

With scalars.

You can create the lookup table using a list of integers and apply it using indexing:

from concrete import fhe

table = fhe.LookupTable([2, -1, 3, 0])

@fhe.compiler({"x": "encrypted"})
def f(x):
    return table[x]

inputset = range(4)
circuit = f.compile(inputset)

assert circuit.encrypt_run_decrypt(0) == table[0] == 2
assert circuit.encrypt_run_decrypt(1) == table[1] == -1
assert circuit.encrypt_run_decrypt(2) == table[2] == 3
assert circuit.encrypt_run_decrypt(3) == table[3] == 0

With tensors.

When you apply a table lookup to a tensor, the scalar table lookup is applied to each element of the tensor:

from concrete import fhe
import numpy as np

table = fhe.LookupTable([2, -1, 3, 0])

@fhe.compiler({"x": "encrypted"})
def f(x):
    return table[x]

inputset = [np.random.randint(0, 4, size=(2, 3)) for _ in range(10)]
circuit = f.compile(inputset)

sample = [
    [0, 1, 3],
    [2, 3, 1],
]
expected_output = [
    [2, -1, 0],
    [3, 0, -1],
]
actual_output = circuit.encrypt_run_decrypt(np.array(sample))

for i in range(2):
    for j in range(3):
        assert actual_output[i][j] == expected_output[i][j] == table[sample[i][j]]

With negative values.

LookupTable mimics array indexing in Python, which means if the lookup variable is negative, the table is looked up from the back:

from concrete import fhe

table = fhe.LookupTable([2, -1, 3, 0])

@fhe.compiler({"x": "encrypted"})
def f(x):
    return table[-x]

inputset = range(1, 5)
circuit = f.compile(inputset)

assert circuit.encrypt_run_decrypt(1) == table[-1] == 0
assert circuit.encrypt_run_decrypt(2) == table[-2] == 3
assert circuit.encrypt_run_decrypt(3) == table[-3] == -1
assert circuit.encrypt_run_decrypt(4) == table[-4] == 2

Direct multi-table lookup

If you want to apply a different lookup table to each element of a tensor, you can have a LookupTable of LookupTables:

from concrete import fhe
import numpy as np

squared = fhe.LookupTable([i ** 2 for i in range(4)])
cubed = fhe.LookupTable([i ** 3 for i in range(4)])

table = fhe.LookupTable([
    [squared, cubed],
    [squared, cubed],
    [squared, cubed],
])

@fhe.compiler({"x": "encrypted"})
def f(x):
    return table[x]

inputset = [np.random.randint(0, 4, size=(3, 2)) for _ in range(10)]
circuit = f.compile(inputset)

sample = [
    [0, 1],
    [2, 3],
    [3, 0],
]
expected_output = [
    [0, 1],
    [4, 27],
    [9, 0]
]
actual_output = circuit.encrypt_run_decrypt(np.array(sample))

for i in range(3):
    for j in range(2):
        if j == 0:
            assert actual_output[i][j] == expected_output[i][j] == squared[sample[i][j]]
        else:
            assert actual_output[i][j] == expected_output[i][j] == cubed[sample[i][j]]

In this example, we applied a squared table to the first column and a cubed table to the second column.

Fused table lookup

Concrete tries to fuse some operations into table lookups automatically so that lookup tables don't need to be created manually:

from concrete import fhe
import numpy as np

@fhe.compiler({"x": "encrypted"})
def f(x):
    return (42 * np.sin(x)).astype(np.int64) // 10

inputset = range(8)
circuit = f.compile(inputset)

for x in range(8):
    assert circuit.encrypt_run_decrypt(x) == f(x)

All lookup tables need to be from integers to integers. So, without .astype(np.int64), Concrete will not be able to fuse.

The function is first traced into:

Concrete then fuses appropriate nodes:

Fusing makes the code more readable and easier to modify, so try to utilize it over manual LookupTables as much as possible.

Simulation

To overcome this issue, simulation is introduced:

from concrete import fhe
import numpy as np

@fhe.compiler({"x": "encrypted"})
def f(x):
    return (x + 1) ** 2

inputset = [np.random.randint(0, 10, size=(10,)) for _ in range(10)]
circuit = f.compile(inputset, p_error=0.1, fhe_simulation=True)

sample = np.array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9])

actual = f(sample)
simulation = circuit.simulate(sample)

print(actual.tolist())
print(simulation.tolist())

After the simulation runs, it prints the following:

[1, 4, 9, 16, 25, 36, 49, 64, 81, 100]
[1, 4, 9, 16, 16, 36, 49, 64, 81, 100]

There are some operations which are not supported in simulation yet. They will result in compilation failures. You can revert to simulation using graph execution using circuit.graph(...) instead of circuit.simulate(...), which won't simulate FHE, but it will evaluate the computation graph, which is like simulating the operations without any errors due to FHE.

Direct Circuits

Direct circuits are still experimental. It is very easy to make mistakes (e.g., due to no overflow checks or type coercion) while using direct circuits, so utilize them with care.

For some applications, the data types of inputs, intermediate values, and outputs are known (e.g., for manipulating bytes, you would want to use uint8). Using inputsets to determine bounds in these cases is not necessary, and can even be error-prone. Therefore, another interface for defining such circuits is introduced:

There are a few differences between direct circuits and traditional circuits:

  • Remember that the resulting dtype for each operation will be determined by its inputs. This can lead to some unexpected results if you're not careful (e.g., if you do -x where x: fhe.uint8, you won't receive a negative value as the result will be fhe.uint8 as well)

  • There is no inputset evaluation when using fhe types in .astype(...) calls (e.g., np.sqrt(x).astype(fhe.uint4)), so the bit width of the output cannot be determined.

  • Be careful with overflows. With inputset evaluation, you'll get bigger bit widths but no overflows. With direct definition, you must ensure that there aren't any overflows manually.

Let's review a more complicated example to see how direct circuits behave:

This prints:

Here is the breakdown of the assigned data types:

As you can see, %8 is subtraction of two unsigned values, and the result is unsigned as well. In the case that c > d, we have an overflow, and this results in undefined behavior.

Configure

Concrete can be customized using Configurations:

You can overwrite individual options as kwargs to the compile method:

Or you can combine both:

Additional kwargs to compile functions take higher precedence. So if you set the option in both configuration and compile methods, the value in the compile method will be used.

Options

  • show_graph: Optional[bool] = None

    • Print computation graph during compilation. True means always print, False means never print, None means print depending on verbose configuration below.

  • show_mlir: Optional[bool] = None

    • Print MLIR during compilation. True means always print, False means never print, None means print depending on verbose configuration below.

  • show_optimizer: Optional[bool] = None

    • Print optimizer output during compilation. True means always print, False means never print, None means print depending on verbose configuration below.

  • show_statistics: Optional[bool] = None

    • Print circuit statistics during compilation. True means always print, False means never print, None means print depending on verbose configuration below.

  • verbose: bool = False

    • Print details related to compilation.

  • dump_artifacts_on_unexpected_failures: bool = True

    • Export debugging artifacts automatically on compilation failures.

  • auto_adjust_rounders: bool = False

    • Adjust rounders automatically.

  • p_error: Optional[float] = None

  • global_p_error: Optional[float] = None

  • single_precision: bool = False

    • Use single precision for the whole circuit.

  • parameter_selection_strategy: (fhe.ParameterSelectionStrategy) = fhe.ParameterSelectionStrategy.MULTI

    • Set how cryptographic parameters are selected.

  • jit: bool = False

    • Enable JIT compilation.

  • loop_parallelize: bool = True

    • Enable loop parallelization in the compiler.

  • dataflow_parallelize: bool = False

    • Enable dataflow parallelization in the compiler.

  • auto_parallelize: bool = False

    • Enable auto parallelization in the compiler.

  • enable_unsafe_features: bool = False

    • Enable unsafe features.

  • use_insecure_key_cache: bool = False (Unsafe)

    • Use the insecure key cache.

  • insecure_key_cache_location: Optional[Union[Path, str]] = None

    • Location of insecure key cache.

  • show_progress: bool = False,

    • Display a progress bar during circuit execution

  • progress_title: str = "",

    • Title of the progress bar

  • progress_tag: Union[bool, int] = False,

    • How many nested tag elements to display with the progress bar. True means all tag elements and False disables the display. 2 will display elmt1.elmt2

  • fhe_simulation: bool = False

    • Enable FHE simulation. Can be enabled later using circuit.enable_fhe_simulation().

  • fhe_execution: bool = True

    • Enable FHE execution. Can be enabled later using circuit.enable_fhe_execution().

  • compiler_debug_mode: bool = False,

    • Enable/disable debug mode of the compiler. This can show a lot of information, including passes and pattern rewrites.

  • compiler_verbose_mode: bool = False,

    • Enable/disable verbose mode of the compiler. This mainly show logs from the compiler, and is less verbose than the debug mode.

  • comparison_strategy_preference: Optional[Union[ComparisonStrategy, str, List[Union[ComparisonStrategy, str]]]] = None

Manage Keys

Concrete generates keys for you implicitly when they are needed and if they have not already been generated. This is useful for development, but it's not flexible (or secure!) for production. Explicit key management API is introduced to be used in such cases to easily generate and re-use keys.

Definition

Let's start by defining a circuit:

Circuits have a property called keys of type fhe.Keys, which has several utility functions dedicated to key management!

Generation

To explicitly generate keys for a circuit, you can use:

Generated keys are stored in memory upon generation, unencrypted.

And it's possible to set a custom seed for reproducibility:

Do not specify the seed manually in a production environment!

Serialization

To serialize keys, say to send it across the network:

Keys are not serialized in encrypted form! Please make sure you keep them in a safe environment, or encrypt them manually after serialization.

Deserialization

To deserialize the keys back, after receiving serialized keys:

Assignment

Once you have a valid fhe.Keys object, you can directly assign it to the circuit:

If assigned keys are generated for a different circuit, an exception will be raised.

Saving

You can also use the filesystem to store the keys directly, without needing to deal with serialization and file management yourself:

Keys are not saved encrypted! Please make sure you store them in a safe environment, or encrypt them manually after saving.

Loading

After keys are saved to disk, you can load them back via:

Automatic Management

If you want to generate keys in the first run and reuse the keys in consecutive runs:

SHA-256

Key Value Database

Deploy

After developing your circuit, you may want to deploy it. However, sharing the details of your circuit with every client might not be desirable. As well as this, you might want to perform the computation on dedicated servers. In this case, you can use the Client and Server features of Concrete.

Development of the circuit

You can develop your circuit using the techniques discussed in previous chapters. Here is a simple example:

Once you have your circuit, you can save everything the server needs:

Then, send server.zip to your computation server.

Setting up a server

You can load the server.zip you get from the development machine:

You will need to wait for requests from clients. The first likely request is for ClientSpecs.

Clients need ClientSpecs to generate keys and request computation. You can serialize ClientSpecs:

Then, you can send it to the clients requesting it.

Setting up clients

After getting the serialized ClientSpecs from a server, you can create the client object:

Generating keys (on the client)

Once you have the Client object, you can perform key generation:

This method generates encryption/decryption keys and evaluation keys.

The server needs access to the evaluation keys that were just generated. You can serialize your evaluation keys as shown:

After serialization, send the evaluation keys to the server.

Serialized evaluation keys are very large, so you may want to cache them on the server instead of sending them with each request.

Encrypting inputs (on the client)

The next step is to encrypt your inputs and request the server to perform some computation. This can be done in the following way:

Then, send the serialized arguments to the server.

Performing computation (on the server)

Once you have serialized evaluation keys and serialized arguments, you can deserialize them:

You can perform the computation, as well:

Then, send the serialized result back to the client. After this, the client can decrypt to receive the result of the computation.

Decrypting the result (on the client)

Once you have received the serialized result of the computation from the server, you can deserialize it:

Then, decrypt the result:

Reuse Arguments

Encryption can take quite some time, memory, and network bandwidth if encrypted data is to be transported. Some applications use the same argument, or a set of arguments as one of the inputs. In such applications, it doesn't make sense to encrypt and transfer the arguments each time. Instead, arguments can be encrypted separately, and reused:

If you have multiple arguments, the encrypt method would return a tuple, and if you specify None as one of the arguments, None is placed at the same location in the resulting tuple (e.g., circuit.encrypt(a, None, b, c, None) would return (encrypted_a, None, encrypted_b, encrypted_c, None)). Each value returned by encrypt can be stored and reused anytime.

The ordering of the arguments must be kept consistent! Encrypting an x and using it as a y could result in undefined behavior.

During development, the speed of homomorphic execution can be a blocker for fast prototyping. You could call the function you're trying to compile directly, of course, but it won't be exactly the same as FHE execution, which has a certain probability of error (see ).

Specify the resulting data type in extension (e.g., fhe.univariate(function, outputs=fhe.uint4)(x)), for the same reason as above.

Error probability for individual table lookups. If set, all table lookups will have the probability of a non-exact result smaller than the set value. See to learn more.

Global error probability for the whole circuit. If set, the whole circuit will have the probability of a non-exact result smaller than the set value. See to learn more.

Specify preference for comparison strategies, can be a single strategy or an ordered list of strategies. See to learn more.

This is an interactive tutorial written as a Jupyter Notebook, which you can find .

This is an interactive tutorial written as a Jupyter Notebook, which you can find .

Exactness
from concrete import fhe

@fhe.circuit({"x": "encrypted"})
def circuit(x: fhe.uint8):
    return x + 42

assert circuit.encrypt_run_decrypt(10) == 52
from concrete import fhe
import numpy as np

def square(value):
    return value ** 2

@fhe.circuit({"x": "encrypted", "y": "encrypted"})
def circuit(x: fhe.uint8, y: fhe.int2):
    a = x + 10
    b = y + 10

    c = np.sqrt(a).round().astype(fhe.uint4)
    d = fhe.univariate(square, outputs=fhe.uint8)(b)

    return d - c

print(circuit)
%0 = x                       # EncryptedScalar<uint8>
%1 = y                       # EncryptedScalar<int2>
%2 = 10                      # ClearScalar<uint4>
%3 = add(%0, %2)             # EncryptedScalar<uint8>
%4 = 10                      # ClearScalar<uint4>
%5 = add(%1, %4)             # EncryptedScalar<int4>
%6 = subgraph(%3)            # EncryptedScalar<uint4>
%7 = square(%5)              # EncryptedScalar<uint8>
%8 = subtract(%7, %6)        # EncryptedScalar<uint8>
return %8

Subgraphs:

    %6 = subgraph(%3):

        %0 = input                         # EncryptedScalar<uint8>
        %1 = sqrt(%0)                      # EncryptedScalar<float64>
        %2 = around(%1, decimals=0)        # EncryptedScalar<float64>
        %3 = astype(%2)                    # EncryptedScalar<uint4>
        return %3
%0 is uint8 because it's specified in the definition
%1 is  int2 because it's specified in the definition
%2 is uint4 because it's the constant 10
%3 is uint8 because it's the addition between uint8 and uint4
%4 is uint4 because it's the constant 10
%5 is  int4 because it's the addition between int2 and uint4
%6 is uint4 because it's specified in astype
%7 is uint8 because it's specified in univariate
%8 is uint8 because it's subtraction between uint8 and uint4
from concrete import fhe
import numpy as np

configuration = fhe.Configuration(p_error=0.01, dataflow_parallelize=True)

@fhe.compiler({"x": "encrypted"})
def f(x):
    return x + 42

inputset = range(10)
circuit = f.compile(inputset, configuration=configuration)
from concrete import fhe
import numpy as np

@fhe.compiler({"x": "encrypted"})
def f(x):
    return x + 42

inputset = range(10)
circuit = f.compile(inputset, p_error=0.01, dataflow_parallelize=True)
from concrete import fhe
import numpy as np

configuration = fhe.Configuration(p_error=0.01)

@fhe.compiler({"x": "encrypted"})
def f(x):
    return x + 42

inputset = range(10)
circuit = f.compile(inputset, configuration=configuration, loop_parallelize=True)
from concrete import fhe

@fhe.compiler({"x": "encrypted"})
def f(x):
    return x ** 2

inputset = range(10)
circuit = f.compile(inputset)
circuit.keys.generate()
circuit.keys.generate(seed=420)
serialized_keys: bytes = circuit.keys.serialize()
keys: fhe.Keys = fhe.Keys.deserialize(serialized_keys)
circuit.keys = keys
circuit.keys.save("/path/to/keys")
circuit.keys.load("/path/to/keys")
circuit.keys.load_if_exists_generate_and_save_otherwise("/path/to/keys")
from concrete import fhe

@fhe.compiler({"x": "encrypted"})
def function(x):
    return x + 42

inputset = range(10)
circuit = function.compile(inputset)
circuit.server.save("server.zip")
from concrete import fhe

server = fhe.Server.load("server.zip")
serialized_client_specs: str = server.client_specs.serialize()
client_specs = fhe.ClientSpecs.deserialize(serialized_client_specs)
client = fhe.Client(client_specs)
client.keys.generate()
serialized_evaluation_keys: bytes = client.evaluation_keys.serialize()
arg: fhe.Value = client.encrypt(7)
serialized_arg: bytes = arg.serialize()
deserialized_evaluation_keys = fhe.EvaluationKeys.deserialize(serialized_evaluation_keys)
deserialized_arg = fhe.Value.deserialize(serialized_arg)
result: fhe.Value = server.run(deserialized_arg, evaluation_keys=deserialized_evaluation_keys)
serialized_result: bytes = result.serialize()
deserialized_result = fhe.Value.deserialize(serialized_result)
decrypted_result = client.decrypt(deserialized_result)
assert decrypted_result == 49
from concrete import fhe

@fhe.compiler({"x": "encrypted", "y": "encrypted"})
def add(x, y):
    return x + y

inputset = [(2, 3), (0, 0), (1, 6), (7, 7), (7, 1), (3, 2), (6, 1), (1, 7), (4, 5), (5, 4)]
circuit = add.compile(inputset)

sample_y = 4
_, encrypted_y = circuit.encrypt(None, sample_y)

for sample_x in range(3, 6):
    encrypted_x, _ = circuit.encrypt(sample_x, None)

    encrypted_result = circuit.run(encrypted_x, encrypted_y)
    result = circuit.decrypt(encrypted_result)

    assert result == sample_x + sample_y
Exactness
Exactness
Comparisons
here
here
univariate

Debug

In this section, you will learn how to debug the compilation process easily and find help in the case that you cannot resolve your issue.

Debug artifacts

Concrete has an artifact system to simplify the process of debugging issues.

Automatic export.

In case of compilation failures, artifacts are exported automatically to the .artifacts directory under the working directory. Let's intentionally create a compilation failure to show what is exported.

def f(x):
    return np.sin(x)

This function fails to compile because Concrete does not support floating-point outputs. When you try to compile it, an exception will be raised and the artifacts will be exported automatically. If you go to the .artifacts directory under the working directory, you'll see the following files:

environment.txt

This file contains information about your setup (i.e., your operating system and python version).

Linux-5.12.13-arch1-2-x86_64-with-glibc2.29 #1 SMP PREEMPT Fri, 25 Jun 2021 22:56:51 +0000
Python 3.8.10

requirements.txt

This file contains information about Python packages and their versions installed on your system.

astroid==2.15.0
attrs==22.2.0
auditwheel==5.3.0
...
wheel==0.40.0
wrapt==1.15.0
zipp==3.15.0

function.txt

This file contains information about the function you tried to compile.

def f(x):
    return np.sin(x)

parameters.txt

This file contains information about the encryption status of the parameters of the function you tried to compile.

x :: encrypted

1.initial.graph.txt

This file contains the textual representation of the initial computation graph right after tracing.

%0 = x              # EncryptedScalar<uint3>
%1 = sin(%0)        # EncryptedScalar<float64>
return %1

2.final.graph.txt

This file contains the textual representation of the final computation graph right before MLIR conversion.

%0 = x              # EncryptedScalar<uint3>
%1 = sin(%0)        # EncryptedScalar<float64>
return %1

traceback.txt

This file contains information about the error you received.

Traceback (most recent call last):
  File "/path/to/your/script.py", line 9, in <module>
    circuit = f.compile(inputset)
  File "/usr/local/lib/python3.10/site-packages/concrete/fhe/compilation/decorators.py", line 159, in compile
    return self.compiler.compile(inputset, configuration, artifacts, **kwargs)
  File "/usr/local/lib/python3.10/site-packages/concrete/fhe/compilation/compiler.py", line 437, in compile
    mlir = GraphConverter.convert(self.graph)
  File "/usr/local/lib/python3.10/site-packages/concrete/fhe/mlir/graph_converter.py", line 677, in convert
    GraphConverter._check_graph_convertibility(graph)
  File "/usr/local/lib/python3.10/site-packages/concrete/fhe/mlir/graph_converter.py", line 240, in _check_graph_convertibility
    raise RuntimeError(message)
RuntimeError: Function you are trying to compile cannot be converted to MLIR

%0 = x              # EncryptedScalar<uint3>          ∈ [3, 5]
%1 = sin(%0)        # EncryptedScalar<float64>        ∈ [-0.958924, 0.14112]
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ only integer operations are supported
                                                                             /path/to/your/script.py:6
return %1

Manual exports.

Manual exports are mostly used for visualization. They can be very useful for demonstrations. Here is how to perform one:

from concrete import fhe
import numpy as np

artifacts = fhe.DebugArtifacts("/tmp/custom/export/path")

@fhe.compiler({"x": "encrypted"})
def f(x):
    return 127 - (50 * (np.sin(x) + 1)).astype(np.int64)

inputset = range(2 ** 3)
circuit = f.compile(inputset, artifacts=artifacts)

artifacts.export()

If you go to the /tmp/custom/export/path directory, you'll see the following files:

1.initial.graph.txt

This file contains the textual representation of the initial computation graph right after tracing.

%0 = x                             # EncryptedScalar<uint1>
%1 = sin(%0)                       # EncryptedScalar<float64>
%2 = 1                             # ClearScalar<uint1>
%3 = add(%1, %2)                   # EncryptedScalar<float64>
%4 = 50                            # ClearScalar<uint6>
%5 = multiply(%4, %3)              # EncryptedScalar<float64>
%6 = astype(%5, dtype=int_)        # EncryptedScalar<uint1>
%7 = 127                           # ClearScalar<uint7>
%8 = subtract(%7, %6)              # EncryptedScalar<uint1>
return %8

2.after-fusing.graph.txt

This file contains the textual representation of the intermediate computation graph after fusing.

%0 = x                       # EncryptedScalar<uint1>
%1 = subgraph(%0)            # EncryptedScalar<uint1>
%2 = 127                     # ClearScalar<uint7>
%3 = subtract(%2, %1)        # EncryptedScalar<uint1>
return %3

Subgraphs:

    %1 = subgraph(%0):

        %0 = input                         # EncryptedScalar<uint1>
        %1 = sin(%0)                       # EncryptedScalar<float64>
        %2 = 1                             # ClearScalar<uint1>
        %3 = add(%1, %2)                   # EncryptedScalar<float64>
        %4 = 50                            # ClearScalar<uint6>
        %5 = multiply(%4, %3)              # EncryptedScalar<float64>
        %6 = astype(%5, dtype=int_)        # EncryptedScalar<uint1>
        return %6

3.final.graph.txt

This file contains the textual representation of the final computation graph right before MLIR conversion.

%0 = x                       # EncryptedScalar<uint3>        ∈ [0, 7]
%1 = subgraph(%0)            # EncryptedScalar<uint7>        ∈ [2, 95]
%2 = 127                     # ClearScalar<uint7>            ∈ [127, 127]
%3 = subtract(%2, %1)        # EncryptedScalar<uint7>        ∈ [32, 125]
return %3

Subgraphs:

    %1 = subgraph(%0):

        %0 = input                         # EncryptedScalar<uint1>
        %1 = sin(%0)                       # EncryptedScalar<float64>
        %2 = 1                             # ClearScalar<uint1>
        %3 = add(%1, %2)                   # EncryptedScalar<float64>
        %4 = 50                            # ClearScalar<uint6>
        %5 = multiply(%4, %3)              # EncryptedScalar<float64>
        %6 = astype(%5, dtype=int_)        # EncryptedScalar<uint1>
        return %6

mlir.txt

This file contains information about the MLIR of the function you compiled using the inputset you provided.

module {
  func.func @main(%arg0: !FHE.eint<7>) -> !FHE.eint<7> {
    %c127_i8 = arith.constant 127 : i8
    %cst = arith.constant dense<"..."> : tensor<128xi64>
    %0 = "FHE.apply_lookup_table"(%arg0, %cst) : (!FHE.eint<7>, tensor<128xi64>) -> !FHE.eint<7>
    %1 = "FHE.sub_int_eint"(%c127_i8, %0) : (i8, !FHE.eint<7>) -> !FHE.eint<7>
    return %1 : !FHE.eint<7>
  }
}

client_parameters.json

This file contains information about the client parameters chosen by Concrete.

{
    "bootstrapKeys": [
        {
            "baseLog": 22,
            "glweDimension": 1,
            "inputLweDimension": 908,
            "inputSecretKeyID": 1,
            "level": 1,
            "outputSecretKeyID": 0,
            "polynomialSize": 8192,
            "variance": 4.70197740328915e-38
        }
    ],
    "functionName": "main",
    "inputs": [
        {
            "encryption": {
                "encoding": {
                    "isSigned": false,
                    "precision": 7
                },
                "secretKeyID": 0,
                "variance": 4.70197740328915e-38
            },
            "shape": {
                "dimensions": [],
                "sign": false,
                "size": 0,
                "width": 7
            }
        }
    ],
    "keyswitchKeys": [
        {
            "baseLog": 3,
            "inputSecretKeyID": 0,
            "level": 6,
            "outputSecretKeyID": 1,
            "variance": 1.7944329123150665e-13
        }
    ],
    "outputs": [
        {
            "encryption": {
                "encoding": {
                    "isSigned": false,
                    "precision": 7
                },
                "secretKeyID": 0,
                "variance": 4.70197740328915e-38
            },
            "shape": {
                "dimensions": [],
                "sign": false,
                "size": 0,
                "width": 7
            }
        }
    ],
    "packingKeyswitchKeys": [],
    "secretKeys": [
        {
            "dimension": 8192
        },
        {
            "dimension": 908
        }
    ]
}

Asking the community

Submitting an issue

If you cannot find a solution in the community forum, or you found a bug in the library, you could create an issue in our GitHub repository.

In case of a bug, try to:

  • minimize randomness;

  • minimize your function as much as possible while keeping the bug - this will help to fix the bug faster;

  • include your inputset in the issue;

  • include reproduction steps in the issue;

  • include debug artifacts in the issue.

In case of a feature request, try to:

  • give a minimal example of the desired behavior;

  • explain your use case.

Rounding

Table lookups have a strict constraint on the number of bits they support. This can be limiting, especially if you don't need exact precision. As well as this, using larger bit-widths leads to slower table lookups.

To overcome these issues, rounded table lookups are introduced. This operation provides a way to round the least significant bits of a large integer and then apply the table lookup on the resulting (smaller) value.

Imagine you have a 5-bit value, but you want to have a 3-bit table lookup. You can call fhe.round_bit_pattern(input, lsbs_to_remove=2) and use the 3-bit value you receive as input to the table lookup.

Let's see how rounding works in practice:

import matplotlib.pyplot as plt
import numpy as np
from concrete import fhe

original_bit_width = 5
lsbs_to_remove = 2

assert 0 < lsbs_to_remove < original_bit_width

original_values = list(range(2**original_bit_width))
rounded_values = [
    fhe.round_bit_pattern(value, lsbs_to_remove)
    for value in original_values
]

previous_rounded = rounded_values[0]
for original, rounded in zip(original_values, rounded_values):
    if rounded != previous_rounded:
        previous_rounded = rounded
        print()

    original_binary = np.binary_repr(original, width=(original_bit_width + 1))
    rounded_binary = np.binary_repr(rounded, width=(original_bit_width + 1))

    print(
        f"{original:2} = 0b_{original_binary[:-lsbs_to_remove]}[{original_binary[-lsbs_to_remove:]}] "
        f"=> "
        f"0b_{rounded_binary[:-lsbs_to_remove]}[{rounded_binary[-lsbs_to_remove:]}] = {rounded}"
    )

fig = plt.figure()
ax = fig.add_subplot()

plt.plot(original_values, original_values, label="original", color="black")
plt.plot(original_values, rounded_values, label="rounded", color="green")
plt.legend()

ax.set_aspect("equal", adjustable="box")
plt.show()

prints:

 0 = 0b_0000[00] => 0b_0000[00] = 0
 1 = 0b_0000[01] => 0b_0000[00] = 0

 2 = 0b_0000[10] => 0b_0001[00] = 4
 3 = 0b_0000[11] => 0b_0001[00] = 4
 4 = 0b_0001[00] => 0b_0001[00] = 4
 5 = 0b_0001[01] => 0b_0001[00] = 4

 6 = 0b_0001[10] => 0b_0010[00] = 8
 7 = 0b_0001[11] => 0b_0010[00] = 8
 8 = 0b_0010[00] => 0b_0010[00] = 8
 9 = 0b_0010[01] => 0b_0010[00] = 8

10 = 0b_0010[10] => 0b_0011[00] = 12
11 = 0b_0010[11] => 0b_0011[00] = 12
12 = 0b_0011[00] => 0b_0011[00] = 12
13 = 0b_0011[01] => 0b_0011[00] = 12

14 = 0b_0011[10] => 0b_0100[00] = 16
15 = 0b_0011[11] => 0b_0100[00] = 16
16 = 0b_0100[00] => 0b_0100[00] = 16
17 = 0b_0100[01] => 0b_0100[00] = 16

18 = 0b_0100[10] => 0b_0101[00] = 20
19 = 0b_0100[11] => 0b_0101[00] = 20
20 = 0b_0101[00] => 0b_0101[00] = 20
21 = 0b_0101[01] => 0b_0101[00] = 20

22 = 0b_0101[10] => 0b_0110[00] = 24
23 = 0b_0101[11] => 0b_0110[00] = 24
24 = 0b_0110[00] => 0b_0110[00] = 24
25 = 0b_0110[01] => 0b_0110[00] = 24

26 = 0b_0110[10] => 0b_0111[00] = 28
27 = 0b_0110[11] => 0b_0111[00] = 28
28 = 0b_0111[00] => 0b_0111[00] = 28
29 = 0b_0111[01] => 0b_0111[00] = 28

30 = 0b_0111[10] => 0b_1000[00] = 32
31 = 0b_0111[11] => 0b_1000[00] = 32

and displays:

If the rounded number is one of the last 2**(lsbs_to_remove - 1) numbers in the input range [0, 2**original_bit_width), an overflow will happen.

By default, if an overflow is encountered during inputset evaluation, bit-widths will be adjusted accordingly. This results in a loss of speed, but ensures accuracy.

You can turn this overflow protection off (e.g., for performance) by using fhe.round_bit_pattern(..., overflow_protection=False). However, this could lead to unexpected behavior at runtime.

Now, let's see how rounding can be used in FHE.

import itertools
import time

import matplotlib.pyplot as plt
import numpy as np
from concrete import fhe

configuration = fhe.Configuration(
    enable_unsafe_features=True,
    use_insecure_key_cache=True,
    insecure_key_cache_location=".keys",
    single_precision=False,
    parameter_selection_strategy=fhe.ParameterSelectionStrategy.MULTI,
)

input_bit_width = 6
input_range = np.array(range(2**input_bit_width))

timings = {}
results = {}

for lsbs_to_remove in range(input_bit_width):
    @fhe.compiler({"x": "encrypted"})
    def f(x):
        return fhe.round_bit_pattern(x, lsbs_to_remove) ** 2
    
    circuit = f.compile(inputset=[input_range], configuration=configuration)
    circuit.keygen()
    
    encrypted_sample = circuit.encrypt(input_range)
    start = time.time()
    encrypted_result = circuit.run(encrypted_sample)
    end = time.time()
    result = circuit.decrypt(encrypted_result)
    
    took = end - start
    
    timings[lsbs_to_remove] = took
    results[lsbs_to_remove] = result

number_of_figures = len(results)

columns = 1
for i in range(2, number_of_figures):
    if number_of_figures % i == 0:
        columns = i
rows = number_of_figures // columns

fig, axs = plt.subplots(rows, columns)
axs = axs.flatten()

baseline = timings[0]
for lsbs_to_remove in range(input_bit_width):
    timing = timings[lsbs_to_remove]
    speedup = baseline / timing
    print(f"lsbs_to_remove={lsbs_to_remove} => {speedup:.2f}x speedup")

    axs[lsbs_to_remove].set_title(f"lsbs_to_remove={lsbs_to_remove}")
    axs[lsbs_to_remove].plot(input_range, results[lsbs_to_remove])

plt.show()

prints:

lsbs_to_remove=0 => 1.00x speedup
lsbs_to_remove=1 => 1.20x speedup
lsbs_to_remove=2 => 2.17x speedup
lsbs_to_remove=3 => 3.75x speedup
lsbs_to_remove=4 => 2.64x speedup
lsbs_to_remove=5 => 2.61x speedup

These speed-ups can vary from system to system.

The reason why the speed-up is not increasing with lsbs_to_remove is because the rounding operation itself has a cost: each bit removal is a PBS. Therefore, if a lot of bits are removed, rounding itself could take longer than the bigger TLU which is evaluated afterwards.

and displays:

Feel free to disable overflow protection and see what happens.

Auto Rounders

Rounding is very useful but, in some cases, you don't know how many bits your input contains, so it's not reliable to specify lsbs_to_remove manually. For this reason, the AutoRounder class is introduced.

AutoRounder allows you to set how many of the most significant bits to keep, but they need to be adjusted using an inputset to determine how many of the least significant bits to remove. This can be done manually using fhe.AutoRounder.adjust(function, inputset), or by setting auto_adjust_rounders configuration to True during compilation.

Here is how auto rounders can be used in FHE:

import itertools
import time

import matplotlib.pyplot as plt
import numpy as np
from concrete import fhe

configuration = fhe.Configuration(
    enable_unsafe_features=True,
    use_insecure_key_cache=True,
    insecure_key_cache_location=".keys",
    single_precision=False,
    parameter_selection_strategy=fhe.ParameterSelectionStrategy.MULTI,
)

input_bit_width = 6
input_range = np.array(range(2**input_bit_width))

timings = {}
results = {}

for target_msbs in reversed(range(1, input_bit_width + 1)):
    rounder = fhe.AutoRounder(target_msbs)

    @fhe.compiler({"x": "encrypted"})
    def f(x):
        return fhe.round_bit_pattern(x, rounder) ** 2

    fhe.AutoRounder.adjust(f, inputset=[input_range])

    circuit = f.compile(inputset=[input_range], configuration=configuration)
    circuit.keygen()

    encrypted_sample = circuit.encrypt(input_range)
    start = time.time()
    encrypted_result = circuit.run(encrypted_sample)
    end = time.time()
    result = circuit.decrypt(encrypted_result)

    took = end - start

    timings[target_msbs] = took
    results[target_msbs] = result

number_of_figures = len(results)

columns = 1
for i in range(2, number_of_figures):
    if number_of_figures % i == 0:
        columns = i
rows = number_of_figures // columns

fig, axs = plt.subplots(rows, columns)
axs = axs.flatten()

baseline = timings[input_bit_width]
for i, target_msbs in enumerate(reversed(range(1, input_bit_width + 1))):
    timing = timings[target_msbs]
    speedup = baseline / timing
    print(f"target_msbs={target_msbs} => {speedup:.2f}x speedup")

    axs[i].set_title(f"target_msbs={target_msbs}")
    axs[i].plot(input_range, results[target_msbs])

plt.show()

prints:

target_msbs=6 => 1.00x speedup
target_msbs=5 => 1.22x speedup
target_msbs=4 => 1.95x speedup
target_msbs=3 => 3.11x speedup
target_msbs=2 => 2.23x speedup
target_msbs=1 => 2.34x speedup

and displays:

AutoRounders should be defined outside the function that is being compiled. They are used to store the result of the adjustment process, so they shouldn't be created each time the function is called. Furthermore, each AutoRounder should be used with exactly one round_bit_pattern call.

Compilation

The next step in compilation is transforming the computation graph. There are many transformations we perform, and these are discussed in their own sections. The result of a transformation is another computation graph.

After transformations are applied, we need to determine the bounds (i.e., the minimum and the maximum values) of each intermediate node. This is required because FHE allows limited precision for computations. Measuring these bounds helps determine the required precision for the function.

The frontend is almost done at this stage and only needs to transform the computation graph to equivalent MLIR code. Once the MLIR is generated, our Compiler backend takes over. Any other frontend wishing to use the Compiler needs to plugin at this stage.

Tracing

We start with a Python function f, such as this one:

def f(x):
    return (2 * x) + 3

The goal of tracing is to create the following computation graph without requiring any change from the user.

(Note that the edge labels are for non-commutative operations. To give an example, a subtraction node represents (predecessor with edge label 0) - (predecessor with edge label 1))

To do this, we make use of Tracers, which are objects that record the operation performed during their creation. We create a Tracer for each argument of the function and call the function with those Tracers. Tracers make use of the operator overloading feature of Python to achieve their goal:

def f(x, y):
    return x + 2 * y

x = Tracer(computation=Input("x"))
y = Tracer(computation=Input("y"))

resulting_tracer = f(x, y)

2 * y will be performed first, and * is overloaded for Tracer to return another tracer: Tracer(computation=Multiply(Constant(2), self.computation)), which is equal to Tracer(computation=Multiply(Constant(2), Input("y"))).

x + (2 * y) will be performed next, and + is overloaded for Tracer to return another tracer: Tracer(computation=Add(self.computation, (2 * y).computation)), which is equal to Tracer(computation=Add(Input("x"), Multiply(Constant(2), Input("y"))).

In the end, we will have output tracers that can be used to create the computation graph. The implementation is a bit more complex than this, but the idea is the same.

Tracing is also responsible for indicating whether the values in the node would be encrypted or not. The rule for that is: if a node has an encrypted predecessor, it is encrypted as well.

Topological transforms

The goal of topological transforms is to make more functions compilable.

With the current version of Concrete, floating-point inputs and floating-point outputs are not supported. However, if the floating-point operations are intermediate operations, they can sometimes be fused into a single table lookup from integer to integer, thanks to some specific transforms.

Let's take a closer look at the transforms we can currently perform.

Fusing.

Bounds measurement

Given a computation graph, the goal of the bounds measurement step is to assign the minimal data type to each node in the graph.

If we have an encrypted input that is always between 0 and 10, we should assign the type EncryptedScalar<uint4> to the node of this input as EncryptedScalar<uint4>. This is the minimal encrypted integer that supports all values between 0 and 10.

If there were negative values in the range, we could have used intX instead of uintX.

Bounds measurement is necessary because FHE supports limited precision, and we don't want unexpected behaviour while evaluating the compiled functions.

Let's take a closer look at how we perform bounds measurement.

Inputset evaluation

This is a simple approach that requires an inputset to be provided by the user.

The inputset is not to be confused with the dataset, which is classical in ML, as it doesn't require labels. Rather, the inputset is a set of values which are typical inputs of the function.

The idea is to evaluate each input in the inputset and record the result of each operation in the computation graph. Then we compare the evaluation results with the current minimum/maximum values of each node and update the minimum/maximum accordingly. After the entire inputset is evaluated, we assign a data type to each node using the minimum and maximum values it contains.

Here is an example, given this computation graph where x is encrypted:

and this inputset:

[2, 3, 1]

Evaluation result of 2:

  • x: 2

  • 2: 2

  • *: 4

  • 3: 3

  • +: 7

New bounds:

  • x: [2, 2]

  • 2: [2, 2]

  • *: [4, 4]

  • 3: [3, 3]

  • +: [7, 7]

Evaluation result of 3:

  • x: 3

  • 2: 2

  • *: 6

  • 3: 3

  • +: 9

New bounds:

  • x: [2, 3]

  • 2: [2, 2]

  • *: [4, 6]

  • 3: [3, 3]

  • +: [7, 9]

Evaluation result of 1:

  • x: 1

  • 2: 2

  • *: 2

  • 3: 3

  • +: 5

New bounds:

  • x: [1, 3]

  • 2: [2, 2]

  • *: [2, 6]

  • 3: [3, 3]

  • +: [5, 9]

Assigned data types:

  • x: EncryptedScalar<uint2>

  • 2: ClearScalar<uint2>

  • *: EncryptedScalar<uint3>

  • 3: ClearScalar<uint2>

  • +: EncryptedScalar<uint4>

MLIR Compiler Passes

We describe below some of the main passes in the compilation pipeline.

FHE to TFHE

TFHE Parameterization

TFHE Parameterization takes care of introducing the chosen parameters in the Intermediate Representation (IR). After this pass, you should be able to see the dimension of ciphertexts, as well as other parameters in the IR.

TFHE to Concrete

This pass lowers TFHE operations to low level operations that are closer to the backend implementation, working on tensors and memory buffers (after a bufferization pass).

Concrete to LLVM

This pass lowers everything to LLVM-IR in order to generate the final binary.

MLIR FHE Dialects

Introduction

Concrete compiler takes advantage of these concepts by defining a set of dialects, capable of representing an FHE program from an abstract specification that is independent of the actual cryptosystem down to a program that can easily be mapped to function calls of a cryptographic library. The dialects for the representation of an FHE program are:

In addition, the project further defines two dialects that help expose dynamic task-parallelism and static data-flow graphs in order to benefit from multi-core, multi-accelerator and distributed systems. These are:

The figure below illustrates the relationship between the dialects and their embedding into the compilation pipeline.

The following sections focus on the FHE-related dialects, i.e., on the FHELinalg Dialect, the FHE Dialect, the TFHE Dialect and the Concrete Dialect.

The FHE and FHELinalg Dialects: An abstract specification of an FHE program

The top part of the figure shows the components which are involved in the generation of the initial IR, ending with the step labelled MLIR translation. When the initial IR is passed on to Concrete Compiler through its Python bindings, all FHE-related operations are specified using either the FHE or FHELinalg Dialect. Both of these dialects provide operations and data types for the abstract specification of an FHE program, completely independently of a cryptosystem. At this point, the IR simply indicates whether an operand is encrypted (via the type FHE.eint<n>, where n stands for the precision in bits) and what operations are applied to encrypted values. Plaintext values simply use MLIR's builtin integer type in (e.g., i3 or i64).

The FHE Dialect provides scalar operations on encrypted integers, such as additions (FHE.add_eint) or multiplications (FHE.mul_eint), while the FHELinalg Dialect offers operations on tensors of encrypted integers, e.g., matrix products (FHELinalg.matmul_eint_eint) or convolutions (FHELinalg.conv2d).

Upon conversion, the FHELinalg.matmul operation is converted to a linalg.generic operation whose body contains a scalar multiplication (FHE.mul_eint_int) and a scalar addition (FHE.add_eint_int):

The TFHE Dialect: Binding to the TFHE cryptosystem and parametrization

In order to obtain an executable program at the end of the compilation pipeline, the abstract specification of the FHE program must at some point be bound to a specific cryptosystem. This is the role of the TFHE Dialect, whose purpose is:

  • to indicate operations to be carried out using an implementation of the TFHE cryptosystem

  • to parametrize the cryptosystem with key sizes, and

  • to provide a mapping between keys and encrypted values

When lowering the IR based on the FHE Dialect to the TFHE Dialect, the compiler first generates a generic form, in which FHE operations are lowered to TFHE operations and where values are converted to unparametrized TFHE.glwe values. The unparametrized form TFHE.glwe<sk?> simply indicates that a TFHE.glwe value is to be used, but without any indication of the cryptographic parameters and the actual key.

The IR below shows the example program after lowering to unparametrized TFHE:

All operations from the FHE dialect have been replaced with corresponding operations from the TFHE Dialect.

During subsequent parametrization, the compiler can either use a set of default parameters or can obtain a set of parameters from Concrete's optimizer. Either way, an additional pass injects the parameters into the IR, replacing all TFHE.glwe<sk?> instances with TFHE.glwe<i,d,n>, where i is a sequential identifier for a key, d the number of GLWE dimensions and n the size of the GLWE polynomial.

The result of such a parametrization for the example is given below:

In this parametrization, a single key with the ID 0 is used, with a single dimension and a polynomial of size 512.

The Concrete Dialect: Preparing bindings with a crypto library

In the next step of the pipeline, operations and types are lowered to the Concrete Dialect. This dialect provides operations, which are implemented by one of Concrete's backend libraries, but still abstracts from any technical details required for interaction with an actual library. The goal is to maintain a high-level representation with value-based semantics and actual operations instead of buffer semantics and library calls, while ensuring that all operations an effectively be lowered to a library call later in the pipeline. However, the abstract types from TFHE are already lowered to tensors of integers with a suitable shape that will hold the binary data of the encrypted values.

The result of the lowering of the example to the Concrete Dialect is shown below:

Bufferization and emitting library calls

The result for the example is given below:

At this stage, the IR is only composed of operations from builtin Dialects and thus amenable to lowering to LLVM-IR using the lowering passes provided by MLIR.

You can seek help with your issue by asking a question directly in the .

There are two main entry points to the Concrete Compiler. The first is to use the Concrete Python frontend. The second is to use the Compiler directly, which takes as input. Concrete Python is more high level and uses the Compiler under the hood.

Compilation begins in the frontend with tracing to get an easy-to-manipulate representation of the function. We call this representation a Computation Graph, which is a Directed Acyclic Graph (DAG) containing nodes representing computations done in the function. Working with graphs is useful because they have been studied extensively and there are a lot of available algorithms to manipulate them. Internally, we use , which is an excellent graph library for Python.

The Compiler takes MLIR code that makes use of both the FHE and FHELinalg for scalar and tensor operations respectively.

Compilation then ends with a series of that generates a native binary which contains executable code. Crypto parameters are generated along the way as well.

We have allocated a whole new chapter to explaining fusing. You can find it .

This pass converts high level operations which are not crypto specific to lower level operations from the TFHE scheme. Ciphertexts get introduced in the code as well. TFHE operations and ciphertexts require some parameters which need to be chosen, and the pass does just that.

Compilation of a Python program starts with Concrete's Python frontend, which first traces and transforms it and then converts it into an intermediate representation (IR) that is further processed by Concrete Compiler. This IR is based on the of the . This document provides an overview of Concrete's FHE-specific representations based on the MLIR framework.

In contrast to traditional infrastructure for compilers, the set of operations and data types that constitute the IR, as well as the level of abstraction that the IR represents, are not fixed in MLIR and can easily be extended. All operations and data types are grouped into , with each dialect representing a specific domain or a specific level of abstraction. Mixing operations and types from different dialects within the same IR is allowed and even encouraged, with all dialects--builtin or developed as an extension--being first-class citizens.

The FHELinalg Dialect (, )

The FHE Dialect (, )

The TFHE Dialect (, )

The Concrete Dialect (, )

and for debugging purposes, the Tracing Dialect (, ).

The RT Dialect (, ) and

The SDFG Dialect (, ).

In a first lowering step of the pipeline, all FHELinalg operations are lowered to operations from using scalar operations from the FHE Dialect. Consider the following example, which consists of a function that performs a multiplication of a matrix of encrypted integers and a matrix of cleartext values:

This is then further lowered to a nest of loops from , implementing the parallel and reduction dimensions from the linalg.generic operation above:

The remaining stages of the pipeline are rather technical. Before any binding to an actual Concrete backend library, the compiler first invokes to convert the value-based IR into an IR with buffer semantics. In particular, this means that keys and encrypted values are no longer abstract values in a mathematical sense, but values backed by a memory location that holds the actual data. This form of IR is then suitable for a pass emitting actual library calls that implement the corresponding operations from the Concrete Dialect for a specific backend.

community forum
MLIR
networkx
dialects
here
passes
TFHE Parameterization
func.func @main(%arg0: tensor<4x3x!FHE.eint<2>>, %arg1: tensor<3x2xi3>) -> tensor<4x2x!FHE.eint<2>> {
  %0 = "FHELinalg.matmul_eint_int"(%arg0, %arg1) : (tensor<4x3x!FHE.eint<2>>, tensor<3x2xi3>) -> tensor<4x2x!FHE.eint<2>>
  return %0 : tensor<4x2x!FHE.eint<2>>
}
#map = affine_map<(d0, d1, d2) -> (d0, d2)>
#map1 = affine_map<(d0, d1, d2) -> (d2, d1)>
#map2 = affine_map<(d0, d1, d2) -> (d0, d1)>

func.func @main(%arg0: tensor<4x3x!FHE.eint<2>>, %arg1: tensor<3x2xi3>) -> tensor<4x2x!FHE.eint<2>> {
  %0 = "FHE.zero_tensor"() : () -> tensor<4x2x!FHE.eint<2>>
  %1 = linalg.generic {indexing_maps = [#map, #map1, #map2], iterator_types = ["parallel", "parallel", "reduction"]} ins(%arg0, %arg1 : tensor<4x3x!FHE.eint<2>>, tensor<3x2xi3>) outs(%0 : tensor<4x2x!FHE.eint<2>>) {
  ^bb0(%in: !FHE.eint<2>, %in_0: i3, %out: !FHE.eint<2>):
    %2 = "FHE.mul_eint_int"(%in, %in_0) : (!FHE.eint<2>, i3) -> !FHE.eint<2>
    %3 = "FHE.add_eint"(%out, %2) : (!FHE.eint<2>, !FHE.eint<2>) -> !FHE.eint<2>
    linalg.yield %3 : !FHE.eint<2>
  } -> tensor<4x2x!FHE.eint<2>>
  return %1 : tensor<4x2x!FHE.eint<2>>
}
func.func @main(%arg0: tensor<4x3x!FHE.eint<2>>, %arg1: tensor<3x2xi3>) -> tensor<4x2x!FHE.eint<2>> {
  %c0 = arith.constant 0 : index
  %c4 = arith.constant 4 : index
  %c1 = arith.constant 1 : index
  %c2 = arith.constant 2 : index
  %c3 = arith.constant 3 : index
  %0 = "FHE.zero_tensor"() : () -> tensor<4x2x!FHE.eint<2>>
  %1 = scf.for %arg2 = %c0 to %c4 step %c1 iter_args(%arg3 = %0) -> (tensor<4x2x!FHE.eint<2>>) {
    %2 = scf.for %arg4 = %c0 to %c2 step %c1 iter_args(%arg5 = %arg3) -> (tensor<4x2x!FHE.eint<2>>) {
      %3 = scf.for %arg6 = %c0 to %c3 step %c1 iter_args(%arg7 = %arg5) -> (tensor<4x2x!FHE.eint<2>>) {
        %extracted = tensor.extract %arg0[%arg2, %arg6] : tensor<4x3x!FHE.eint<2>>
        %extracted_0 = tensor.extract %arg1[%arg6, %arg4] : tensor<3x2xi3>
        %extracted_1 = tensor.extract %arg7[%arg2, %arg4] : tensor<4x2x!FHE.eint<2>>
        %4 = "FHE.mul_eint_int"(%extracted, %extracted_0) : (!FHE.eint<2>, i3) -> !FHE.eint<2>
        %5 = "FHE.add_eint"(%extracted_1, %4) : (!FHE.eint<2>, !FHE.eint<2>) -> !FHE.eint<2>
        %inserted = tensor.insert %5 into %arg7[%arg2, %arg4] : tensor<4x2x!FHE.eint<2>>
        scf.yield %inserted : tensor<4x2x!FHE.eint<2>>
      }
      scf.yield %3 : tensor<4x2x!FHE.eint<2>>
    }
    scf.yield %2 : tensor<4x2x!FHE.eint<2>>
  }
  return %1 : tensor<4x2x!FHE.eint<2>>
}
func.func @main(%arg0: tensor<4x3x!TFHE.glwe<sk?>>, %arg1: tensor<3x2xi3>) -> tensor<4x2x!TFHE.glwe<sk?>> {
  %c0 = arith.constant 0 : index
  %c4 = arith.constant 4 : index
  %c1 = arith.constant 1 : index
  %c2 = arith.constant 2 : index
  %c3 = arith.constant 3 : index
  %0 = "TFHE.zero_tensor"() : () -> tensor<4x2x!TFHE.glwe<sk?>>
  %1 = scf.for %arg2 = %c0 to %c4 step %c1 iter_args(%arg3 = %0) -> (tensor<4x2x!TFHE.glwe<sk?>>) {
    %2 = scf.for %arg4 = %c0 to %c2 step %c1 iter_args(%arg5 = %arg3) -> (tensor<4x2x!TFHE.glwe<sk?>>) {
      %3 = scf.for %arg6 = %c0 to %c3 step %c1 iter_args(%arg7 = %arg5) -> (tensor<4x2x!TFHE.glwe<sk?>>) {
        %extracted = tensor.extract %arg0[%arg2, %arg6] : tensor<4x3x!TFHE.glwe<sk?>>
        %extracted_0 = tensor.extract %arg1[%arg6, %arg4] : tensor<3x2xi3>
        %extracted_1 = tensor.extract %arg7[%arg2, %arg4] : tensor<4x2x!TFHE.glwe<sk?>>
        %4 = arith.extsi %extracted_0 : i3 to i64
        %5 = "TFHE.mul_glwe_int"(%extracted, %4) : (!TFHE.glwe<sk?>, i64) -> !TFHE.glwe<sk?>
        %6 = "TFHE.add_glwe"(%extracted_1, %5) : (!TFHE.glwe<sk?>, !TFHE.glwe<sk?>) -> !TFHE.glwe<sk?>
        %inserted = tensor.insert %6 into %arg7[%arg2, %arg4] : tensor<4x2x!TFHE.glwe<sk?>>
        scf.yield %inserted : tensor<4x2x!TFHE.glwe<sk?>>
      }
      scf.yield %3 : tensor<4x2x!TFHE.glwe<sk?>>
    }
    scf.yield %2 : tensor<4x2x!TFHE.glwe<sk?>>
  }
  return %1 : tensor<4x2x!TFHE.glwe<sk?>>
}
func.func @main(%arg0: tensor<4x3x!TFHE.glwe<sk<0,1,512>>>, %arg1: tensor<3x2xi3>) -> tensor<4x2x!TFHE.glwe<sk<0,1,512>>> {
  %c0 = arith.constant 0 : index
  %c4 = arith.constant 4 : index
  %c1 = arith.constant 1 : index
  %c2 = arith.constant 2 : index
  %c3 = arith.constant 3 : index
  %0 = "TFHE.zero_tensor"() : () -> tensor<4x2x!TFHE.glwe<sk<0,1,512>>>
  %1 = scf.for %arg2 = %c0 to %c4 step %c1 iter_args(%arg3 = %0) -> (tensor<4x2x!TFHE.glwe<sk<0,1,512>>>) {
    %2 = scf.for %arg4 = %c0 to %c2 step %c1 iter_args(%arg5 = %arg3) -> (tensor<4x2x!TFHE.glwe<sk<0,1,512>>>) {
      %3 = scf.for %arg6 = %c0 to %c3 step %c1 iter_args(%arg7 = %arg5) -> (tensor<4x2x!TFHE.glwe<sk<0,1,512>>>) {
        %extracted = tensor.extract %arg0[%arg2, %arg6] : tensor<4x3x!TFHE.glwe<sk<0,1,512>>>
        %extracted_0 = tensor.extract %arg1[%arg6, %arg4] : tensor<3x2xi3>
        %extracted_1 = tensor.extract %arg7[%arg2, %arg4] : tensor<4x2x!TFHE.glwe<sk<0,1,512>>>
        %4 = arith.extsi %extracted_0 : i3 to i64
        %5 = "TFHE.mul_glwe_int"(%extracted, %4) : (!TFHE.glwe<sk<0,1,512>>, i64) -> !TFHE.glwe<sk<0,1,512>>
        %6 = "TFHE.add_glwe"(%extracted_1, %5) : (!TFHE.glwe<sk<0,1,512>>, !TFHE.glwe<sk<0,1,512>>) -> !TFHE.glwe<sk<0,1,512>>
        %inserted = tensor.insert %6 into %arg7[%arg2, %arg4] : tensor<4x2x!TFHE.glwe<sk<0,1,512>>>
        scf.yield %inserted : tensor<4x2x!TFHE.glwe<sk<0,1,512>>>
      }
      scf.yield %3 : tensor<4x2x!TFHE.glwe<sk<0,1,512>>>
    }
    scf.yield %2 : tensor<4x2x!TFHE.glwe<sk<0,1,512>>>
  }
  return %1 : tensor<4x2x!TFHE.glwe<sk<0,1,512>>>
}
func.func @main(%arg0: tensor<4x3x513xi64>, %arg1: tensor<3x2xi3>) -> tensor<4x2x513xi64> {
  %c0 = arith.constant 0 : index
  %c4 = arith.constant 4 : index
  %c1 = arith.constant 1 : index
  %c2 = arith.constant 2 : index
  %c3 = arith.constant 3 : index
  %generated = tensor.generate  {
  ^bb0(%arg2: index, %arg3: index, %arg4: index):
    %c0_i64 = arith.constant 0 : i64
    tensor.yield %c0_i64 : i64
  } : tensor<4x2x513xi64>
  %0 = scf.for %arg2 = %c0 to %c4 step %c1 iter_args(%arg3 = %generated) -> (tensor<4x2x513xi64>) {
    %1 = scf.for %arg4 = %c0 to %c2 step %c1 iter_args(%arg5 = %arg3) -> (tensor<4x2x513xi64>) {
      %2 = scf.for %arg6 = %c0 to %c3 step %c1 iter_args(%arg7 = %arg5) -> (tensor<4x2x513xi64>) {
        %extracted_slice = tensor.extract_slice %arg0[%arg2, %arg6, 0] [1, 1, 513] [1, 1, 1] : tensor<4x3x513xi64> to tensor<513xi64>
        %extracted = tensor.extract %arg1[%arg6, %arg4] : tensor<3x2xi3>
        %extracted_slice_0 = tensor.extract_slice %arg7[%arg2, %arg4, 0] [1, 1, 513] [1, 1, 1] : tensor<4x2x513xi64> to tensor<513xi64>
        %3 = arith.extsi %extracted : i3 to i64
        %4 = "Concrete.mul_cleartext_lwe_tensor"(%extracted_slice, %3) : (tensor<513xi64>, i64) -> tensor<513xi64>
        %5 = "Concrete.add_lwe_tensor"(%extracted_slice_0, %4) : (tensor<513xi64>, tensor<513xi64>) -> tensor<513xi64>
        %inserted_slice = tensor.insert_slice %5 into %arg7[%arg2, %arg4, 0] [1, 1, 513] [1, 1, 1] : tensor<513xi64> into tensor<4x2x513xi64>
        scf.yield %inserted_slice : tensor<4x2x513xi64>
      }
      scf.yield %2 : tensor<4x2x513xi64>
    }
    scf.yield %1 : tensor<4x2x513xi64>
  }
  return %0 : tensor<4x2x513xi64>
}
func.func @main(%arg0: memref<4x3x513xi64, strided<[?, ?, ?], offset: ?>>, %arg1: memref<3x2xi3, strided<[?, ?], offset: ?>>, %arg2: !Concrete.context) -> memref<4x2x513xi64> {
  %c0_i64 = arith.constant 0 : i64
  call @_dfr_start(%c0_i64, %arg2) : (i64, !Concrete.context) -> ()
  %c0 = arith.constant 0 : index
  %c4 = arith.constant 4 : index
  %c1 = arith.constant 1 : index
  %c2 = arith.constant 2 : index
  %c513 = arith.constant 513 : index
  %c0_i64_0 = arith.constant 0 : i64
  %c3 = arith.constant 3 : index
  %alloc = memref.alloc() {alignment = 64 : i64} : memref<4x2x513xi64>
  scf.for %arg3 = %c0 to %c4 step %c1 {
    scf.for %arg4 = %c0 to %c2 step %c1 {
      scf.for %arg5 = %c0 to %c513 step %c1 {
        memref.store %c0_i64_0, %alloc[%arg3, %arg4, %arg5] : memref<4x2x513xi64>
      }
    }
  }
  scf.for %arg3 = %c0 to %c4 step %c1 {
    scf.for %arg4 = %c0 to %c2 step %c1 {
      %subview = memref.subview %alloc[%arg3, %arg4, 0] [1, 1, 513] [1, 1, 1] : memref<4x2x513xi64> to memref<513xi64, strided<[1], offset: ?>>
      scf.for %arg5 = %c0 to %c3 step %c1 {
        %subview_1 = memref.subview %arg0[%arg3, %arg5, 0] [1, 1, 513] [1, 1, 1] : memref<4x3x513xi64, strided<[?, ?, ?], offset: ?>> to memref<513xi64, strided<[?], offset: ?>>
        %0 = memref.load %arg1[%arg5, %arg4] : memref<3x2xi3, strided<[?, ?], offset: ?>>
        %1 = arith.extsi %0 : i3 to i64
        %alloc_2 = memref.alloc() {alignment = 64 : i64} : memref<513xi64>
        %cast = memref.cast %alloc_2 : memref<513xi64> to memref<?xi64, #map>
        %cast_3 = memref.cast %subview_1 : memref<513xi64, strided<[?], offset: ?>> to memref<?xi64, #map>
        func.call @memref_mul_cleartext_lwe_ciphertext_u64(%cast, %cast_3, %1) : (memref<?xi64, #map>, memref<?xi64, #map>, i64) -> ()
        %alloc_4 = memref.alloc() {alignment = 64 : i64} : memref<513xi64>
        %cast_5 = memref.cast %alloc_4 : memref<513xi64> to memref<?xi64, #map>
        %cast_6 = memref.cast %subview : memref<513xi64, strided<[1], offset: ?>> to memref<?xi64, #map>
        %cast_7 = memref.cast %alloc_2 : memref<513xi64> to memref<?xi64, #map>
        func.call @memref_add_lwe_ciphertexts_u64(%cast_5, %cast_6, %cast_7) : (memref<?xi64, #map>, memref<?xi64, #map>, memref<?xi64, #map>) -> ()
        memref.dealloc %alloc_2 : memref<513xi64>
        memref.copy %alloc_4, %subview : memref<513xi64> to memref<513xi64, strided<[1], offset: ?>>
        memref.dealloc %alloc_4 : memref<513xi64>
      }
    }
  }
  call @_dfr_stop(%c0_i64) : (i64) -> ()
  return %alloc : memref<4x2x513xi64>
}

Runtime Dialect

Runtime dialect A dialect for representation the abstraction needed for the runtime.

Operation definition

RT.await_future (::mlir::concretelang::RT::AwaitFutureOp)

Wait for a future and access its data.

The results of a dataflow task are always futures which could be further used as inputs to subsequent tasks. When the result of a task is needed in the outer execution context, the result future needs to be synchronized and its data accessed using RT.await_future.

Operands:

Operand
Description

input

Future with a parameterized element type

Results:

Result
Description

output

any type

RT.build_return_ptr_placeholder (::mlir::concretelang::RT::BuildReturnPtrPlaceholderOp)

Results:

Result
Description

output

Pointer to a parameterized element type

RT.clone_future (::mlir::concretelang::RT::CloneFutureOp)

Interfaces: AllocationOpInterface, MemoryEffectOpInterface

Operands:

Operand
Description

input

Future with a parameterized element type

Results:

Result
Description

output

Future with a parameterized element type

RT.create_async_task (::mlir::concretelang::RT::CreateAsyncTaskOp)

Create a dataflow task.

Attributes:

Attribute
MLIR Type
Description

workfn

::mlir::SymbolRefAttr

symbol reference attribute

Operands:

Operand
Description

list

any type

RT.dataflow_task (::mlir::concretelang::RT::DataflowTaskOp)

Dataflow task operation

RT.dataflow_task allows to specify a task that will be concurrently executed when their operands are ready. Operands are either the results of computation in other RT.dataflow_task (dataflow dependences) or obtained from the execution context (immediate operands). Operands are synchronized using futures and, in the case of immediate operands, copied when the task is created. Caution is required when the operand is a pointer as no deep copy will occur.

Example:

func @test(%0 : i64): (i64, i64) {
    // Execute right now as %0 is ready.
    %1, %2 = "RT.dataflow_task"(%0) ({
        %a = addi %0, %0 : i64
        %b = muli %0, %0 : i64
        "RT.dataflow_yield"(%a, %b) : (i64, i64) -> i64
    }) : (i64, i64) -> (i64, i64)
    // Concurrently execute both tasks below when the task above is completed.
    %3 = "RT.dataflow_task"(%1) ({
        %c = constant 1 : %i64
        %a = addi %1, %c : i64
        "RT.dataflow_yield"(%a) : (i64, i64) -> i64
    }) : (i64, i64) -> (i64, i64)
    %4 = "RT.dataflow_task"(%2) ({
        %c = constant 2 : %i64
        %a = addi %2, %c : i64
        "RT.dataflow_yield"(%a) : (i64, i64) -> i64
    }) : (i64, i64) -> (i64, i64)
    return %3, %4 : (i64, i64)
}

Traits: AutomaticAllocationScope, SingleBlockImplicitTerminator

Interfaces: AllocationOpInterface, MemoryEffectOpInterface, RegionBranchOpInterface

Operands:

Operand
Description

inputs

any type

Results:

Result
Description

outputs

any type

RT.dataflow_yield (::mlir::concretelang::RT::DataflowYieldOp)

Dataflow yield operation

RT.dataflow_yield is a special terminator operation for blocks inside the region in RT.dataflow_task. It allows to specify the return values of a RT.dataflow_task.

Example:

%0 = constant 1 : i64
%1 = constant 2 : i64
"RT.dataflow_yield" %0, %1 : i64, i64

Traits: ReturnLike, Terminator

Operands:

Operand
Description

values

any type

RT.deallocate_future_data (::mlir::concretelang::RT::DeallocateFutureDataOp)

Operands:

Operand
Description

input

Future with a parameterized element type

RT.deallocate_future (::mlir::concretelang::RT::DeallocateFutureOp)

Operands:

Operand
Description

input

any type

RT.deref_return_ptr_placeholder (::mlir::concretelang::RT::DerefReturnPtrPlaceholderOp)

Operands:

Operand
Description

input

Pointer to a parameterized element type

Results:

Result
Description

output

Future with a parameterized element type

RT.deref_work_function_argument_ptr_placeholder (::mlir::concretelang::RT::DerefWorkFunctionArgumentPtrPlaceholderOp)

Operands:

Operand
Description

input

Pointer to a parameterized element type

Results:

Result
Description

output

any type

RT.make_ready_future (::mlir::concretelang::RT::MakeReadyFutureOp)

Build a ready future.

Data passed to dataflow tasks must be encapsulated in futures, including immediate operands. These must be converted into futures using RT.make_ready_future.

Interfaces: AllocationOpInterface, MemoryEffectOpInterface

Operands:

Operand
Description

input

any type

memrefCloned

any type

Results:

Result
Description

output

Future with a parameterized element type

RT.register_task_work_function (::mlir::concretelang::RT::RegisterTaskWorkFunctionOp)

Register the task work-function with the runtime system.

Operands:

Operand
Description

list

any type

RT.work_function_return (::mlir::concretelang::RT::WorkFunctionReturnOp)

Operands:

Operand
Description

in

any type

out

any type

Type definition

FutureType

Future with a parameterized element type

The value of a !RT.future type represents the result of an asynchronous operation.

Examples:

!RT.future<i64>

Parameters:

Parameter
C++ type
Description

elementType

Type

PointerType

Pointer to a parameterized element type

Parameters:

Parameter
C++ type
Description

elementType

Type

SDFG Dialect

Dialect for the construction of static data flow graphs A dialect for the construction of static data flow graphs. The data flow graph is composed of a set of processes, connected through data streams. Special streams allow for data to be injected into and to be retrieved from the data flow graph.

Operation definition

SDFG.get (::mlir::concretelang::SDFG::Get)

Retrieves a data element from a stream

Retrieves a single data element from the specified stream (i.e., an instance of the element type of the stream).

Example:

"SDFG.get" (%stream) : (!SDFG.stream<1024xi64>) -> (tensor<1024xi64>)

Operands:

Operand
Description

stream

An SDFG data stream

Results:

Result
Description

data

any type

SDFG.init (::mlir::concretelang::SDFG::Init)

Initializes the streaming framework

Initializes the streaming framework. This operation must be performed before control reaches any other operation from the dialect.

Example:

"SDFG.init" : () -> !SDFG.dfg

Results:

Result
Description

«unnamed»

An SDFG data flow graph

SDFG.make_process (::mlir::concretelang::SDFG::MakeProcess)

Creates a new SDFG process

Creates a new SDFG process and connects it to the input and output streams.

Example:

%in0 = "SDFG.make_stream" { type = #SDFG.stream_kind<host_to_device> }(%dfg) : (!SDFG.dfg) -> !SDFG.stream<tensor<1024xi64>>
%in1 = "SDFG.make_stream" { type = #SDFG.stream_kind<host_to_device> }(%dfg) : (!SDFG.dfg) -> !SDFG.stream<tensor<1024xi64>>
%out = "SDFG.make_stream" { type = #SDFG.stream_kind<device_to_host> }(%dfg) : (!SDFG.dfg) -> !SDFG.stream<tensor<1024xi64>>
"SDFG.make_process" { type = #SDFG.process_kind<add_eint> }(%dfg, %in0, %in1, %out) :
  (!SDFG.dfg, !SDFG.stream<tensor<1024xi64>>, !SDFG.stream<tensor<1024xi64>>, !SDFG.stream<tensor<1024xi64>>) -> ()

Attributes:

Attribute
MLIR Type
Description

type

::mlir::concretelang::SDFG::ProcessKindAttr

Process kind

Operands:

Operand
Description

dfg

An SDFG data flow graph

streams

An SDFG data stream

SDFG.make_stream (::mlir::concretelang::SDFG::MakeStream)

Returns a new SDFG stream

Returns a new SDFG stream, transporting data either between processes on the device, from the host to the device or from the device to the host. All streams are typed, allowing data to be read / written through SDFG.get and SDFG.put only using the stream's type.

Example:

"SDFG.make_stream" { name = "stream", type = #SDFG.stream_kind<host_to_device> }(%dfg)
  : (!SDFG.dfg) -> !SDFG.stream<tensor<1024xi64>>

Attributes:

Attribute
MLIR Type
Description

name

::mlir::StringAttr

string attribute

type

::mlir::concretelang::SDFG::StreamKindAttr

Stream kind

Operands:

Operand
Description

dfg

An SDFG data flow graph

Results:

Result
Description

«unnamed»

An SDFG data stream

SDFG.put (::mlir::concretelang::SDFG::Put)

Writes a data element to a stream

Writes the input operand to the specified stream. The operand's type must meet the element type of the stream.

Example:

"SDFG.put" (%stream, %data) : (!SDFG.stream<1024xi64>, tensor<1024xi64>) -> ()

Operands:

Operand
Description

stream

An SDFG data stream

data

any type

SDFG.shutdown (::mlir::concretelang::SDFG::Shutdown)

Shuts down the streaming framework

Shuts down the streaming framework. This operation must be performed after any other operation from the dialect.

Example:

"SDFG.shutdown" (%dfg) : !SDFG.dfg

Operands:

Operand
Description

dfg

An SDFG data flow graph

SDFG.start (::mlir::concretelang::SDFG::Start)

Finalizes the creation of an SDFG and starts execution of its processes

Finalizes the creation of an SDFG and starts execution of its processes. Any creation of streams and processes must take place before control reaches this operation.

Example:

"SDFG.start"(%dfg) : !SDFG.dfg

Operands:

Operand
Description

dfg

An SDFG data flow graph

Attribute definition

ProcessKindAttr

Process kind

Syntax:

#SDFG.process_kind<
  ::mlir::concretelang::SDFG::ProcessKind   # value
>

Parameters:

Parameter
C++ type
Description

value

::mlir::concretelang::SDFG::ProcessKind

an enum of type ProcessKind

StreamKindAttr

Stream kind

Syntax:

#SDFG.stream_kind<
  ::mlir::concretelang::SDFG::StreamKind   # value
>

Parameters:

Parameter
C++ type
Description

value

::mlir::concretelang::SDFG::StreamKind

an enum of type StreamKind

Type definition

DFGType

An SDFG data flow graph

Syntax: !SDFG.dfg

A handle to an SDFG data flow graph

StreamType

An SDFG data stream

An SDFG stream to connect SDFG processes.

Parameters:

Parameter
C++ type
Description

elementType

Type

Contribute

There are two ways to contribute to Concrete. You can:

  • Open issues to report bugs and typos or suggest ideas;

  • Request to become an official contributor by emailing hello@zama.ai. Only approved contributors can send pull requests (PRs), so get in touch before you do.

Tracing Dialect

Tracing dialect A dialect to print program values at runtime.

Operation definition

Tracing.trace_ciphertext (::mlir::concretelang::Tracing::TraceCiphertextOp)

Prints a ciphertext.

Attributes:

Attribute
MLIR Type
Description

msg

::mlir::StringAttr

string attribute

nmsb

::mlir::IntegerAttr

32-bit signless integer attribute

Operands:

Operand
Description

ciphertext

Tracing.trace_message (::mlir::concretelang::Tracing::TraceMessageOp)

Prints a message.

Attributes:

Attribute
MLIR Type
Description

msg

::mlir::StringAttr

string attribute

Tracing.trace_plaintext (::mlir::concretelang::Tracing::TracePlaintextOp)

Prints a plaintext.

Attributes:

Attribute
MLIR Type
Description

msg

::mlir::StringAttr

string attribute

nmsb

::mlir::IntegerAttr

32-bit signless integer attribute

Operands:

Operand
Description

plaintext

integer

Project layout

Concrete is a modular framework composed by sub-projects using different technologies, all having theirs own build system and test suite. Each sub-project have is own README that explain how to setup the developer environment, how to build it and how to run tests commands.

Concrete is made of 4 main categories of sub-project that are organized in subdirectories from the root of the concrete repo:

  • frontends contains high-level transpilers that target end users developers who want to use the Concrete stack easily from their usual environment. There are for now only one frontend provided by the Concrete project: a Python frontend named concrete-python.

  • compilers contains the sub-projects in charge of actually solving the compilation problem of an high-level abstraction of FHE to an actual executable. concrete-optimizer is a Rust based project that solves the optimization problems of an FHE dag to a TFHE dag and concrete-compiler which use concrete-optimizer is an end-to-end MLIR-based compiler that takes a crypto free FHE dialect and generates compilation artifacts both for the client and the server. concrete-compiler project provide in addition of the compilation engine, a client and server library in order to easily play with the compilation artifacts to implement a client and server protocol.

  • backends contains CAPI that can be called by the concrete-compiler runtime to perform the cryptographic operations. There are currently two backends:

    • concrete-cpu, using TFHE-rs that implement the fastest implementation of TFHE on CPU.

    • concrete-cuda that provides a GPU acceleration of TFHE primitives.

  • tools are basically every other sub-projects that cannot be classified in the three previous categories and which are used as a common support by the others.

Concrete Dialect

Low Level Fully Homomorphic Encryption dialect A dialect for representation of low level operation on fully homomorphic ciphertext.

Operation definition

Concrete.add_lwe_buffer (::mlir::concretelang::Concrete::AddLweBufferOp)

Returns the sum of 2 lwe ciphertexts

Operands:

Operand
Description

result

1D memref of 64-bit signless integer values

lhs

1D memref of 64-bit signless integer values

rhs

1D memref of 64-bit signless integer values

Concrete.add_lwe_tensor (::mlir::concretelang::Concrete::AddLweTensorOp)

Returns the sum of 2 lwe ciphertexts

Traits: AlwaysSpeculatableImplTrait

Interfaces: ConditionallySpeculatable, NoMemoryEffect (MemoryEffectOpInterface)

Effects: MemoryEffects::Effect{}

Operands:

Operand
Description

lhs

1D tensor of 64-bit signless integer values

rhs

1D tensor of 64-bit signless integer values

Results:

Result
Description

result

1D tensor of 64-bit signless integer values

Concrete.add_plaintext_lwe_buffer (::mlir::concretelang::Concrete::AddPlaintextLweBufferOp)

Returns the sum of a clear integer and an lwe ciphertext

Operands:

Operand
Description

result

1D memref of 64-bit signless integer values

lhs

1D memref of 64-bit signless integer values

rhs

64-bit signless integer

Concrete.add_plaintext_lwe_tensor (::mlir::concretelang::Concrete::AddPlaintextLweTensorOp)

Returns the sum of a clear integer and an lwe ciphertext

Traits: AlwaysSpeculatableImplTrait

Interfaces: ConditionallySpeculatable, NoMemoryEffect (MemoryEffectOpInterface)

Effects: MemoryEffects::Effect{}

Operands:

Operand
Description

lhs

1D tensor of 64-bit signless integer values

rhs

64-bit signless integer

Results:

Result
Description

result

1D tensor of 64-bit signless integer values

Concrete.batched_add_lwe_buffer (::mlir::concretelang::Concrete::BatchedAddLweBufferOp)

Batched version of AddLweBufferOp, which performs the same operation on multiple elements

Operands:

Operand
Description

result

2D memref of 64-bit signless integer values

lhs

2D memref of 64-bit signless integer values

rhs

2D memref of 64-bit signless integer values

Concrete.batched_add_lwe_tensor (::mlir::concretelang::Concrete::BatchedAddLweTensorOp)

Batched version of AddLweTensorOp, which performs the same operation on multiple elements

Traits: AlwaysSpeculatableImplTrait

Interfaces: ConditionallySpeculatable, NoMemoryEffect (MemoryEffectOpInterface)

Effects: MemoryEffects::Effect{}

Operands:

Operand
Description

lhs

2D tensor of 64-bit signless integer values

rhs

2D tensor of 64-bit signless integer values

Results:

Result
Description

result

2D tensor of 64-bit signless integer values

Concrete.batched_add_plaintext_cst_lwe_buffer (::mlir::concretelang::Concrete::BatchedAddPlaintextCstLweBufferOp)

Batched version of AddPlaintextLweBufferOp, which performs the same operation on multiple elements

Operands:

Operand
Description

result

2D memref of 64-bit signless integer values

lhs

2D memref of 64-bit signless integer values

rhs

64-bit signless integer

Concrete.batched_add_plaintext_cst_lwe_tensor (::mlir::concretelang::Concrete::BatchedAddPlaintextCstLweTensorOp)

Batched version of AddPlaintextLweTensorOp, which performs the same operation on multiple elements

Traits: AlwaysSpeculatableImplTrait

Interfaces: ConditionallySpeculatable, NoMemoryEffect (MemoryEffectOpInterface)

Effects: MemoryEffects::Effect{}

Operands:

Operand
Description

lhs

2D tensor of 64-bit signless integer values

rhs

64-bit signless integer

Results:

Result
Description

result

2D tensor of 64-bit signless integer values

Concrete.batched_add_plaintext_lwe_buffer (::mlir::concretelang::Concrete::BatchedAddPlaintextLweBufferOp)

Batched version of AddPlaintextLweBufferOp, which performs the same operation on multiple elements

Operands:

Operand
Description

result

2D memref of 64-bit signless integer values

lhs

2D memref of 64-bit signless integer values

rhs

1D memref of 64-bit signless integer values

Concrete.batched_add_plaintext_lwe_tensor (::mlir::concretelang::Concrete::BatchedAddPlaintextLweTensorOp)

Batched version of AddPlaintextLweTensorOp, which performs the same operation on multiple elements

Traits: AlwaysSpeculatableImplTrait

Interfaces: ConditionallySpeculatable, NoMemoryEffect (MemoryEffectOpInterface)

Effects: MemoryEffects::Effect{}

Operands:

Operand
Description

lhs

2D tensor of 64-bit signless integer values

rhs

1D tensor of 64-bit signless integer values

Results:

Result
Description

result

2D tensor of 64-bit signless integer values

Concrete.batched_bootstrap_lwe_buffer (::mlir::concretelang::Concrete::BatchedBootstrapLweBufferOp)

Batched version of BootstrapLweOp, which performs the same operation on multiple elements

Attributes:

Attribute
MLIR Type
Description

inputLweDim

::mlir::IntegerAttr

32-bit signless integer attribute

polySize

::mlir::IntegerAttr

32-bit signless integer attribute

level

::mlir::IntegerAttr

32-bit signless integer attribute

baseLog

::mlir::IntegerAttr

32-bit signless integer attribute

glweDimension

::mlir::IntegerAttr

32-bit signless integer attribute

bskIndex

::mlir::IntegerAttr

32-bit signless integer attribute

Operands:

Operand
Description

result

2D memref of 64-bit signless integer values

input_ciphertext

2D memref of 64-bit signless integer values

lookup_table

1D memref of 64-bit signless integer values

Concrete.batched_bootstrap_lwe_tensor (::mlir::concretelang::Concrete::BatchedBootstrapLweTensorOp)

Batched version of BootstrapLweOp, which performs the same operation on multiple elements

Traits: AlwaysSpeculatableImplTrait

Interfaces: ConditionallySpeculatable, NoMemoryEffect (MemoryEffectOpInterface)

Effects: MemoryEffects::Effect{}

Attributes:

Attribute
MLIR Type
Description

inputLweDim

::mlir::IntegerAttr

32-bit signless integer attribute

polySize

::mlir::IntegerAttr

32-bit signless integer attribute

level

::mlir::IntegerAttr

32-bit signless integer attribute

baseLog

::mlir::IntegerAttr

32-bit signless integer attribute

glweDimension

::mlir::IntegerAttr

32-bit signless integer attribute

bskIndex

::mlir::IntegerAttr

32-bit signless integer attribute

Operands:

Operand
Description

input_ciphertext

2D tensor of 64-bit signless integer values

lookup_table

1D tensor of 64-bit signless integer values

Results:

Result
Description

result

2D tensor of 64-bit signless integer values

Concrete.batched_keyswitch_lwe_buffer (::mlir::concretelang::Concrete::BatchedKeySwitchLweBufferOp)

Batched version of KeySwitchLweOp, which performs the same operation on multiple elements

Attributes:

Attribute
MLIR Type
Description

level

::mlir::IntegerAttr

32-bit signless integer attribute

baseLog

::mlir::IntegerAttr

32-bit signless integer attribute

lwe_dim_in

::mlir::IntegerAttr

32-bit signless integer attribute

lwe_dim_out

::mlir::IntegerAttr

32-bit signless integer attribute

kskIndex

::mlir::IntegerAttr

32-bit signless integer attribute

Operands:

Operand
Description

result

2D memref of 64-bit signless integer values

ciphertext

2D memref of 64-bit signless integer values

Concrete.batched_keyswitch_lwe_tensor (::mlir::concretelang::Concrete::BatchedKeySwitchLweTensorOp)

Batched version of KeySwitchLweOp, which performs the same operation on multiple elements

Traits: AlwaysSpeculatableImplTrait

Interfaces: ConditionallySpeculatable, NoMemoryEffect (MemoryEffectOpInterface)

Effects: MemoryEffects::Effect{}

Attributes:

Attribute
MLIR Type
Description

level

::mlir::IntegerAttr

32-bit signless integer attribute

baseLog

::mlir::IntegerAttr

32-bit signless integer attribute

lwe_dim_in

::mlir::IntegerAttr

32-bit signless integer attribute

lwe_dim_out

::mlir::IntegerAttr

32-bit signless integer attribute

kskIndex

::mlir::IntegerAttr

32-bit signless integer attribute

Operands:

Operand
Description

ciphertext

2D tensor of 64-bit signless integer values

Results:

Result
Description

result

2D tensor of 64-bit signless integer values

Concrete.batched_mapped_bootstrap_lwe_buffer (::mlir::concretelang::Concrete::BatchedMappedBootstrapLweBufferOp)

Batched, mapped version of BootstrapLweOp, which performs the same operation on multiple elements

Attributes:

Attribute
MLIR Type
Description

inputLweDim

::mlir::IntegerAttr

32-bit signless integer attribute

polySize

::mlir::IntegerAttr

32-bit signless integer attribute

level

::mlir::IntegerAttr

32-bit signless integer attribute

baseLog

::mlir::IntegerAttr

32-bit signless integer attribute

glweDimension

::mlir::IntegerAttr

32-bit signless integer attribute

bskIndex

::mlir::IntegerAttr

32-bit signless integer attribute

Operands:

Operand
Description

result

2D memref of 64-bit signless integer values

input_ciphertext

2D memref of 64-bit signless integer values

lookup_table_vector

2D memref of 64-bit signless integer values

Concrete.batched_mapped_bootstrap_lwe_tensor (::mlir::concretelang::Concrete::BatchedMappedBootstrapLweTensorOp)

Batched, mapped version of BootstrapLweOp, which performs the same operation on multiple elements

Traits: AlwaysSpeculatableImplTrait

Interfaces: ConditionallySpeculatable, NoMemoryEffect (MemoryEffectOpInterface)

Effects: MemoryEffects::Effect{}

Attributes:

Attribute
MLIR Type
Description

inputLweDim

::mlir::IntegerAttr

32-bit signless integer attribute

polySize

::mlir::IntegerAttr

32-bit signless integer attribute

level

::mlir::IntegerAttr

32-bit signless integer attribute

baseLog

::mlir::IntegerAttr

32-bit signless integer attribute

glweDimension

::mlir::IntegerAttr

32-bit signless integer attribute

bskIndex

::mlir::IntegerAttr

32-bit signless integer attribute

Operands:

Operand
Description

input_ciphertext

2D tensor of 64-bit signless integer values

lookup_table_vector

2D tensor of 64-bit signless integer values

Results:

Result
Description

result

2D tensor of 64-bit signless integer values

Concrete.batched_mul_cleartext_cst_lwe_buffer (::mlir::concretelang::Concrete::BatchedMulCleartextCstLweBufferOp)

Batched version of MulCleartextLweBufferOp, which performs the same operation on multiple elements

Operands:

Operand
Description

result

2D memref of 64-bit signless integer values

lhs

2D memref of 64-bit signless integer values

rhs

64-bit signless integer

Concrete.batched_mul_cleartext_cst_lwe_tensor (::mlir::concretelang::Concrete::BatchedMulCleartextCstLweTensorOp)

Batched version of MulCleartextLweTensorOp, which performs the same operation on multiple elements

Traits: AlwaysSpeculatableImplTrait

Interfaces: ConditionallySpeculatable, NoMemoryEffect (MemoryEffectOpInterface)

Effects: MemoryEffects::Effect{}

Operands:

Operand
Description

lhs

2D tensor of 64-bit signless integer values

rhs

64-bit signless integer

Results:

Result
Description

result

2D tensor of 64-bit signless integer values

Concrete.batched_mul_cleartext_lwe_buffer (::mlir::concretelang::Concrete::BatchedMulCleartextLweBufferOp)

Batched version of MulCleartextLweBufferOp, which performs the same operation on multiple elements

Operands:

Operand
Description

result

2D memref of 64-bit signless integer values

lhs

2D memref of 64-bit signless integer values

rhs

1D memref of 64-bit signless integer values

Concrete.batched_mul_cleartext_lwe_tensor (::mlir::concretelang::Concrete::BatchedMulCleartextLweTensorOp)

Batched version of MulCleartextLweTensorOp, which performs the same operation on multiple elements

Traits: AlwaysSpeculatableImplTrait

Interfaces: ConditionallySpeculatable, NoMemoryEffect (MemoryEffectOpInterface)

Effects: MemoryEffects::Effect{}

Operands:

Operand
Description

lhs

2D tensor of 64-bit signless integer values

rhs

1D tensor of 64-bit signless integer values

Results:

Result
Description

result

2D tensor of 64-bit signless integer values

Concrete.batched_negate_lwe_buffer (::mlir::concretelang::Concrete::BatchedNegateLweBufferOp)

Batched version of NegateLweBufferOp, which performs the same operation on multiple elements

Operands:

Operand
Description

result

2D memref of 64-bit signless integer values

ciphertext

2D memref of 64-bit signless integer values

Concrete.batched_negate_lwe_tensor (::mlir::concretelang::Concrete::BatchedNegateLweTensorOp)

Batched version of NegateLweTensorOp, which performs the same operation on multiple elements

Traits: AlwaysSpeculatableImplTrait

Interfaces: ConditionallySpeculatable, NoMemoryEffect (MemoryEffectOpInterface)

Effects: MemoryEffects::Effect{}

Operands:

Operand
Description

ciphertext

2D tensor of 64-bit signless integer values

Results:

Result
Description

result

2D tensor of 64-bit signless integer values

Concrete.bootstrap_lwe_buffer (::mlir::concretelang::Concrete::BootstrapLweBufferOp)

Bootstraps a LWE ciphertext with a GLWE trivial encryption of the lookup table

Attributes:

Attribute
MLIR Type
Description

inputLweDim

::mlir::IntegerAttr

32-bit signless integer attribute

polySize

::mlir::IntegerAttr

32-bit signless integer attribute

level

::mlir::IntegerAttr

32-bit signless integer attribute

baseLog

::mlir::IntegerAttr

32-bit signless integer attribute

glweDimension

::mlir::IntegerAttr

32-bit signless integer attribute

bskIndex

::mlir::IntegerAttr

32-bit signless integer attribute

Operands:

Operand
Description

result

1D memref of 64-bit signless integer values

input_ciphertext

1D memref of 64-bit signless integer values

lookup_table

1D memref of 64-bit signless integer values

Concrete.bootstrap_lwe_tensor (::mlir::concretelang::Concrete::BootstrapLweTensorOp)

Bootstraps an LWE ciphertext with a GLWE trivial encryption of the lookup table

Traits: AlwaysSpeculatableImplTrait

Interfaces: ConditionallySpeculatable, NoMemoryEffect (MemoryEffectOpInterface)

Effects: MemoryEffects::Effect{}

Attributes:

Attribute
MLIR Type
Description

inputLweDim

::mlir::IntegerAttr

32-bit signless integer attribute

polySize

::mlir::IntegerAttr

32-bit signless integer attribute

level

::mlir::IntegerAttr

32-bit signless integer attribute

baseLog

::mlir::IntegerAttr

32-bit signless integer attribute

glweDimension

::mlir::IntegerAttr

32-bit signless integer attribute

bskIndex

::mlir::IntegerAttr

32-bit signless integer attribute

Operands:

Operand
Description

input_ciphertext

1D tensor of 64-bit signless integer values

lookup_table

1D tensor of 64-bit signless integer values

Results:

Result
Description

result

1D tensor of 64-bit signless integer values

Concrete.encode_expand_lut_for_bootstrap_buffer (::mlir::concretelang::Concrete::EncodeExpandLutForBootstrapBufferOp)

Encode and expand a lookup table so that it can be used for a bootstrap

Attributes:

Attribute
MLIR Type
Description

polySize

::mlir::IntegerAttr

32-bit signless integer attribute

outputBits

::mlir::IntegerAttr

32-bit signless integer attribute

isSigned

::mlir::BoolAttr

bool attribute

Operands:

Operand
Description

result

1D memref of 64-bit signless integer values

input_lookup_table

1D memref of 64-bit signless integer values

Concrete.encode_expand_lut_for_bootstrap_tensor (::mlir::concretelang::Concrete::EncodeExpandLutForBootstrapTensorOp)

Encode and expand a lookup table so that it can be used for a bootstrap

Traits: AlwaysSpeculatableImplTrait

Interfaces: ConditionallySpeculatable, NoMemoryEffect (MemoryEffectOpInterface)

Effects: MemoryEffects::Effect{}

Attributes:

Attribute
MLIR Type
Description

polySize

::mlir::IntegerAttr

32-bit signless integer attribute

outputBits

::mlir::IntegerAttr

32-bit signless integer attribute

isSigned

::mlir::BoolAttr

bool attribute

Operands:

Operand
Description

input_lookup_table

1D tensor of 64-bit signless integer values

Results:

Result
Description

result

1D tensor of 64-bit signless integer values

Concrete.encode_lut_for_crt_woppbs_buffer (::mlir::concretelang::Concrete::EncodeLutForCrtWopPBSBufferOp)

Encode and expand a lookup table so that it can be used for a crt wop pbs

Attributes:

Attribute
MLIR Type
Description

crtDecomposition

::mlir::ArrayAttr

64-bit integer array attribute

crtBits

::mlir::ArrayAttr

64-bit integer array attribute

modulusProduct

::mlir::IntegerAttr

32-bit signless integer attribute

isSigned

::mlir::BoolAttr

bool attribute

Operands:

Operand
Description

result

2D memref of 64-bit signless integer values

input_lookup_table

1D memref of 64-bit signless integer values

Concrete.encode_lut_for_crt_woppbs_tensor (::mlir::concretelang::Concrete::EncodeLutForCrtWopPBSTensorOp)

Encode and expand a lookup table so that it can be used for a wop pbs

Traits: AlwaysSpeculatableImplTrait

Interfaces: ConditionallySpeculatable, NoMemoryEffect (MemoryEffectOpInterface)

Effects: MemoryEffects::Effect{}

Attributes:

Attribute
MLIR Type
Description

crtDecomposition

::mlir::ArrayAttr

64-bit integer array attribute

crtBits

::mlir::ArrayAttr

64-bit integer array attribute

modulusProduct

::mlir::IntegerAttr

32-bit signless integer attribute

isSigned

::mlir::BoolAttr

bool attribute

Operands:

Operand
Description

input_lookup_table

1D tensor of 64-bit signless integer values

Results:

Result
Description

result

2D tensor of 64-bit signless integer values

Concrete.encode_plaintext_with_crt_buffer (::mlir::concretelang::Concrete::EncodePlaintextWithCrtBufferOp)

Encodes a plaintext by decomposing it on a crt basis

Attributes:

Attribute
MLIR Type
Description

mods

::mlir::ArrayAttr

64-bit integer array attribute

modsProd

::mlir::IntegerAttr

64-bit signless integer attribute

Operands:

Operand
Description

result

1D memref of 64-bit signless integer values

input

64-bit signless integer

Concrete.encode_plaintext_with_crt_tensor (::mlir::concretelang::Concrete::EncodePlaintextWithCrtTensorOp)

Encodes a plaintext by decomposing it on a crt basis

Traits: AlwaysSpeculatableImplTrait

Interfaces: ConditionallySpeculatable, NoMemoryEffect (MemoryEffectOpInterface)

Effects: MemoryEffects::Effect{}

Attributes:

Attribute
MLIR Type
Description

mods

::mlir::ArrayAttr

64-bit integer array attribute

modsProd

::mlir::IntegerAttr

64-bit signless integer attribute

Operands:

Operand
Description

input

64-bit signless integer

Results:

Result
Description

result

1D tensor of 64-bit signless integer values

Concrete.keyswitch_lwe_buffer (::mlir::concretelang::Concrete::KeySwitchLweBufferOp)

Performs a keyswitching operation on an LWE ciphertext

Attributes:

Attribute
MLIR Type
Description

level

::mlir::IntegerAttr

32-bit signless integer attribute

baseLog

::mlir::IntegerAttr

32-bit signless integer attribute

lwe_dim_in

::mlir::IntegerAttr

32-bit signless integer attribute

lwe_dim_out

::mlir::IntegerAttr

32-bit signless integer attribute

kskIndex

::mlir::IntegerAttr

32-bit signless integer attribute

Operands:

Operand
Description

result

1D memref of 64-bit signless integer values

ciphertext

1D memref of 64-bit signless integer values

Concrete.keyswitch_lwe_tensor (::mlir::concretelang::Concrete::KeySwitchLweTensorOp)

Performs a keyswitching operation on an LWE ciphertext

Traits: AlwaysSpeculatableImplTrait

Interfaces: ConditionallySpeculatable, NoMemoryEffect (MemoryEffectOpInterface)

Effects: MemoryEffects::Effect{}

Attributes:

Attribute
MLIR Type
Description

level

::mlir::IntegerAttr

32-bit signless integer attribute

baseLog

::mlir::IntegerAttr

32-bit signless integer attribute

lwe_dim_in

::mlir::IntegerAttr

32-bit signless integer attribute

lwe_dim_out

::mlir::IntegerAttr

32-bit signless integer attribute

kskIndex

::mlir::IntegerAttr

32-bit signless integer attribute

Operands:

Operand
Description

ciphertext

1D tensor of 64-bit signless integer values

Results:

Result
Description

result

1D tensor of 64-bit signless integer values

Concrete.mul_cleartext_lwe_buffer (::mlir::concretelang::Concrete::MulCleartextLweBufferOp)

Returns the product of a clear integer and a lwe ciphertext

Operands:

Operand
Description

result

1D memref of 64-bit signless integer values

lhs

1D memref of 64-bit signless integer values

rhs

64-bit signless integer

Concrete.mul_cleartext_lwe_tensor (::mlir::concretelang::Concrete::MulCleartextLweTensorOp)

Returns the product of a clear integer and a lwe ciphertext

Traits: AlwaysSpeculatableImplTrait

Interfaces: ConditionallySpeculatable, NoMemoryEffect (MemoryEffectOpInterface)

Effects: MemoryEffects::Effect{}

Operands:

Operand
Description

lhs

1D tensor of 64-bit signless integer values

rhs

64-bit signless integer

Results:

Result
Description

result

1D tensor of 64-bit signless integer values

Concrete.negate_lwe_buffer (::mlir::concretelang::Concrete::NegateLweBufferOp)

Negates an lwe ciphertext

Operands:

Operand
Description

result

1D memref of 64-bit signless integer values

ciphertext

1D memref of 64-bit signless integer values

Concrete.negate_lwe_tensor (::mlir::concretelang::Concrete::NegateLweTensorOp)

Negates an lwe ciphertext

Traits: AlwaysSpeculatableImplTrait

Interfaces: ConditionallySpeculatable, NoMemoryEffect (MemoryEffectOpInterface)

Effects: MemoryEffects::Effect{}

Operands:

Operand
Description

ciphertext

1D tensor of 64-bit signless integer values

Results:

Result
Description

result

1D tensor of 64-bit signless integer values

Concrete.wop_pbs_crt_lwe_buffer (::mlir::concretelang::Concrete::WopPBSCRTLweBufferOp)

Attributes:

Attribute
MLIR Type
Description

bootstrapLevel

::mlir::IntegerAttr

32-bit signless integer attribute

bootstrapBaseLog

::mlir::IntegerAttr

32-bit signless integer attribute

keyswitchLevel

::mlir::IntegerAttr

32-bit signless integer attribute

keyswitchBaseLog

::mlir::IntegerAttr

32-bit signless integer attribute

packingKeySwitchInputLweDimension

::mlir::IntegerAttr

32-bit signless integer attribute

packingKeySwitchoutputPolynomialSize

::mlir::IntegerAttr

32-bit signless integer attribute

packingKeySwitchLevel

::mlir::IntegerAttr

32-bit signless integer attribute

packingKeySwitchBaseLog

::mlir::IntegerAttr

32-bit signless integer attribute

circuitBootstrapLevel

::mlir::IntegerAttr

32-bit signless integer attribute

circuitBootstrapBaseLog

::mlir::IntegerAttr

32-bit signless integer attribute

crtDecomposition

::mlir::ArrayAttr

64-bit integer array attribute

kskIndex

::mlir::IntegerAttr

32-bit signless integer attribute

bskIndex

::mlir::IntegerAttr

32-bit signless integer attribute

pkskIndex

::mlir::IntegerAttr

32-bit signless integer attribute

Operands:

Operand
Description

result

2D memref of 64-bit signless integer values

ciphertext

2D memref of 64-bit signless integer values

lookup_table

2D memref of 64-bit signless integer values

Concrete.wop_pbs_crt_lwe_tensor (::mlir::concretelang::Concrete::WopPBSCRTLweTensorOp)

Traits: AlwaysSpeculatableImplTrait

Interfaces: ConditionallySpeculatable, NoMemoryEffect (MemoryEffectOpInterface)

Effects: MemoryEffects::Effect{}

Attributes:

Attribute
MLIR Type
Description

bootstrapLevel

::mlir::IntegerAttr

32-bit signless integer attribute

bootstrapBaseLog

::mlir::IntegerAttr

32-bit signless integer attribute

keyswitchLevel

::mlir::IntegerAttr

32-bit signless integer attribute

keyswitchBaseLog

::mlir::IntegerAttr

32-bit signless integer attribute

packingKeySwitchInputLweDimension

::mlir::IntegerAttr

32-bit signless integer attribute

packingKeySwitchoutputPolynomialSize

::mlir::IntegerAttr

32-bit signless integer attribute

packingKeySwitchLevel

::mlir::IntegerAttr

32-bit signless integer attribute

packingKeySwitchBaseLog

::mlir::IntegerAttr

32-bit signless integer attribute

circuitBootstrapLevel

::mlir::IntegerAttr

32-bit signless integer attribute

circuitBootstrapBaseLog

::mlir::IntegerAttr

32-bit signless integer attribute

crtDecomposition

::mlir::ArrayAttr

64-bit integer array attribute

kskIndex

::mlir::IntegerAttr

32-bit signless integer attribute

bskIndex

::mlir::IntegerAttr

32-bit signless integer attribute

pkskIndex

::mlir::IntegerAttr

32-bit signless integer attribute

Operands:

Operand
Description

ciphertext

2D tensor of 64-bit signless integer values

lookupTable

2D tensor of 64-bit signless integer values

Results:

Result
Description

result

2D tensor of 64-bit signless integer values

Type definition

ContextType

A runtime context

Syntax: !Concrete.context

An abstract runtime context to pass contextual value, like public keys, ...

FHELinalg Dialect

High Level Fully Homomorphic Encryption Linalg dialect A dialect for representation of high level linalg operations on fully homomorphic ciphertexts.

Operation definition

FHELinalg.add_eint_int (::mlir::concretelang::FHELinalg::AddEintIntOp)

Returns a tensor that contains the addition of a tensor of encrypted integers and a tensor of clear integers.

Performs an addition following the broadcasting rules between a tensor of encrypted integers and a tensor of clear integers. The width of the clear integers must be less than or equal to the width of encrypted integers.

Examples:

// Returns the term-by-term addition of `%a0` with `%a1`
"FHELinalg.add_eint_int"(%a0, %a1) : (tensor<4x!FHE.eint<4>>, tensor<4xi5>) -> tensor<4x!FHE.eint<4>>

// Returns the term-by-term addition of `%a0` with `%a1`, where dimensions equal to one are stretched.
"FHELinalg.add_eint_int"(%a0, %a1) : (tensor<4x1x4x!FHE.eint<4>>, tensor<1x4x4xi5>) -> tensor<4x4x4x!FHE.eint<4>>

// Returns the addition of a 3x3 matrix of encrypted integers and a 3x1 matrix (a column) of integers.
//
// [1,2,3]   [1]   [2,3,4]
// [4,5,6] + [2] = [6,7,8]
// [7,8,9]   [3]   [10,11,12]
//
// The dimension #1 of operand #2 is stretched as it is equal to 1.
"FHELinalg.add_eint_int"(%a0, %a1) : (tensor<3x3x!FHE.eint<4>>, tensor<3x1xi5>) -> tensor<3x3x!FHE.eint<4>>

// Returns the addition of a 3x3 matrix of encrypted integers and a 1x3 matrix (a line) of integers.
//
// [1,2,3]             [2,4,6]
// [4,5,6] + [1,2,3] = [5,7,9]
// [7,8,9]             [8,10,12]
//
// The dimension #2 of operand #2 is stretched as it is equal to 1.
"FHELinalg.add_eint_int"(%a0, %a1) : (tensor<3x3x!FHE.eint<4>>, tensor<1x3xi5>) -> tensor<3x3x!FHE.eint<4>>

// Same behavior as the previous one, but as the dimension #2 is missing of operand #2.
"FHELinalg.add_eint_int(%a0, %a1)" : (tensor<3x4x!FHE.eint<4>>, tensor<3xi5>) -> tensor<4x4x4x!FHE.eint<4>>

Traits: AlwaysSpeculatableImplTrait, TensorBinaryEintInt, TensorBroadcastingRules

Interfaces: Binary, BinaryEintInt, ConditionallySpeculatable, NoMemoryEffect (MemoryEffectOpInterface)

Effects: MemoryEffects::Effect{}

Operands:

Operand
Description

lhs

rhs

Results:

Result
Description

«unnamed»

FHELinalg.add_eint (::mlir::concretelang::FHELinalg::AddEintOp)

Returns a tensor that contains the addition of two tensor of encrypted integers.

Performs an addition following the broadcasting rules between two tensors of encrypted integers. The width of the encrypted integers must be equal.

Examples:

// Returns the term-by-term addition of `%a0` with `%a1`
"FHELinalg.add_eint"(%a0, %a1) : (tensor<4x!FHE.eint<4>>, tensor<4x!FHE.eint<4>>) -> tensor<4x!FHE.eint<4>>

// Returns the term-by-term addition of `%a0` with `%a1`, where dimensions equal to one are stretched.
"FHELinalg.add_eint"(%a0, %a1) : (tensor<4x1x4x!FHE.eint<4>>, tensor<1x4x4x!FHE.eint<4>>) -> tensor<4x4x4x!FHE.eint<4>>

// Returns the addition of a 3x3 matrix of encrypted integers and a 3x1 matrix (a column) of encrypted integers.
//
// [1,2,3]   [1]   [2,3,4]
// [4,5,6] + [2] = [6,7,8]
// [7,8,9]   [3]   [10,11,12]
//
// The dimension #1 of operand #2 is stretched as it is equal to 1.
"FHELinalg.add_eint"(%a0, %a1) : (tensor<3x3x!FHE.eint<4>>, tensor<3x1x!FHE.eint<4>>) -> tensor<3x3x!FHE.eint<4>>

// Returns the addition of a 3x3 matrix of encrypted integers and a 1x3 matrix (a line) of encrypted integers.
//
// [1,2,3]             [2,4,6]
// [4,5,6] + [1,2,3] = [5,7,9]
// [7,8,9]             [8,10,12]
//
// The dimension #2 of operand #2 is stretched as it is equal to 1.
"FHELinalg.add_eint"(%a0, %a1) : (tensor<3x3x!FHE.eint<4>>, tensor<1x3x!FHE.eint<4>>) -> tensor<3x3x!FHE.eint<4>>

// Same behavior as the previous one, but as the dimension #2 of operand #2 is missing.
"FHELinalg.add_eint"(%a0, %a1) : (tensor<3x3x!FHE.eint<4>>, tensor<3x!FHE.eint<4>>) -> tensor<3x3x!FHE.eint<4>>

Traits: AlwaysSpeculatableImplTrait, TensorBinaryEint, TensorBroadcastingRules

Interfaces: BinaryEint, ConditionallySpeculatable, NoMemoryEffect (MemoryEffectOpInterface)

Effects: MemoryEffects::Effect{}

Operands:

Operand
Description

lhs

rhs

Results:

Result
Description

«unnamed»

FHELinalg.apply_lookup_table (::mlir::concretelang::FHELinalg::ApplyLookupTableEintOp)

Returns a tensor that contains the result of the lookup on a table.

For each encrypted index, performs a lookup table of clear integers.

// The result of this operation, is a tensor that contains the result of a lookup table.
// i.e. %res[i, ..., k] = %lut[%t[i, ..., k]]
%res = FHELinalg.apply_lookup_table(%t, %lut): tensor<DNx...xD1x!FHE.eint<$p>>, tensor<D2^$pxi64> -> tensor<DNx...xD1x!FHE.eint<$p>>

The %lut argument must be a tensor with one dimension, where its dimension is 2^p where p is the width of the encrypted integers.

Examples:


// Returns the lookup of 3x3 matrix of encrypted indices of with 2 on a table of size 4=2² of clear integers.
//
// [0,1,2]                 [1,3,5]
// [3,0,1] lut [1,3,5,7] = [7,1,3]
// [2,3,0]                 [5,7,1]
"FHELinalg.apply_lookup_table"(%t, %lut) : (tensor<3x3x!FHE.eint<2>>, tensor<4xi64>) -> tensor<3x3x!FHE.eint<3>>

Traits: AlwaysSpeculatableImplTrait

Interfaces: ConditionallySpeculatable, ConstantNoise, NoMemoryEffect (MemoryEffectOpInterface)

Effects: MemoryEffects::Effect{}

Operands:

Operand
Description

t

lut

Results:

Result
Description

«unnamed»

FHELinalg.apply_mapped_lookup_table (::mlir::concretelang::FHELinalg::ApplyMappedLookupTableEintOp)

Returns a tensor that contains the result of the lookup on a table, using a different lookup table for each element, specified by a map.

Performs for each encrypted index a lookup table of clear integers. Multiple lookup tables are passed, and the application of lookup tables is performed following the broadcasting rules. The precise lookup is specified by a map.

// The result of this operation, is a tensor that contains the result of the lookup on different tables.
// i.e. %res[i, ..., k] = %luts[ %map[i, ..., k] ][ %t[i, ..., k] ]
%res = FHELinalg.apply_mapped_lookup_table(%t, %luts, %map): tensor<DNx...xD1x!FHE.eint<$p>>, tensor<DM x ^$p>, tensor<DNx...xD1xindex> -> tensor<DNx...xD1x!FHE.eint<$p>>

Examples:


// Returns the lookup of 3x2 matrix of encrypted indices of width 2 on a vector of 2 tables of size 4=2^2 of clear integers.
//
// [0,1]                                 [0, 1] = [1,2]
// [3,0] lut [[1,3,5,7], [0,2,4,6]] with [0, 1] = [7,0]
// [2,3]                                 [0, 1] = [5,6]
"FHELinalg.apply_mapped_lookup_table"(%t, %luts, %map) : (tensor<3x2x!FHE.eint<2>>, tensor<2x4xi64>, tensor<3x2xindex>) -> tensor<3x2x!FHE.eint<3>>

Others examples: // [0,1] [1, 0] = [3,2] // [3,0] lut [[1,3,5,7], [0,2,4,6]] with [0, 1] = [7,0] // [2,3] [1, 0] = [4,7]

// [0,1] [0, 0] = [1,3] // [3,0] lut [[1,3,5,7], [0,2,4,6]] with [1, 1] = [6,0] // [2,3] [1, 0] = [4,7]

// [0,1] [0] = [1,3] // [3,0] lut [[1,3,5,7], [0,2,4,6]] with [1] = [6,0] // [2,3] [0] = [5,7]

// [0,1] = [1,2] // [3,0] lut [[1,3,5,7], [0,2,4,6]] with [0, 1] = [7,0] // [2,3] = [5,6]

Traits: AlwaysSpeculatableImplTrait

Interfaces: ConditionallySpeculatable, ConstantNoise, NoMemoryEffect (MemoryEffectOpInterface)

Effects: MemoryEffects::Effect{}

Operands:

Operand
Description

t

luts

map

Results:

Result
Description

«unnamed»

FHELinalg.apply_multi_lookup_table (::mlir::concretelang::FHELinalg::ApplyMultiLookupTableEintOp)

Returns a tensor that contains the result of the lookup on a table, using a different lookup table for each element.

Performs for each encrypted index a lookup table of clear integers. Multiple lookup tables are passed, and the application of lookup tables is performed following the broadcasting rules.

// The result of this operation, is a tensor that contains the result of the lookup on different tables.
// i.e. %res[i, ..., k] = [ %luts[i][%t[i]], ..., %luts[k][%t[k]] ]
%res = FHELinalg.apply_multi_lookup_table(%t, %lut): tensor<DNx...xD1x!FHE.eint<$p>>, tensor<DMx...xD1xD2^$pxi64> -> tensor<DNx...xD1x!FHE.eint<$p>>

The %luts argument should be a tensor with M dimension, where the first M-1 dimensions are broadcastable with the N dimensions of the encrypted tensor, and where the last dimension dimension is equal to 2^p where p is the width of the encrypted integers.

Examples:


// Returns the lookup of 3x2 matrix of encrypted indices of width 2 on a vector of 2 tables of size 4=2² of clear integers.
// The tables are broadcasted along the first dimension of the tensor.
//
// [0,1]                            = [1,2]
// [3,0] lut [[1,3,5,7], [0,2,4,6]] = [7,0]
// [2,3]                            = [5,6]
"FHELinalg.apply_multi_lookup_table"(%t, %luts) : (tensor<3x2x!FHE.eint<2>>, tensor<2x4xi64>) -> tensor<3x2x!FHE.eint<3>>

// Returns the lookup of a vector of 3 encrypted indices of width 2 on a vector of 3 tables of size 4=2² of clear integers.
//
// [3,0,1] lut [[1,3,5,7], [0,2,4,6], [1,2,3,4]] = [7,0,2]
"FHELinalg.apply_multi_lookup_table"(%t, %luts) : (tensor<3x!FHE.eint<2>>, tensor<3x4xi64>) -> tensor<3x!FHE.eint<3>>

Traits: AlwaysSpeculatableImplTrait

Interfaces: ConditionallySpeculatable, ConstantNoise, NoMemoryEffect (MemoryEffectOpInterface)

Effects: MemoryEffects::Effect{}

Operands:

Operand
Description

t

luts

Results:

Result
Description

«unnamed»

FHELinalg.concat (::mlir::concretelang::FHELinalg::ConcatOp)

Concatenates a sequence of tensors along an existing axis.

Concatenates several tensors along a given axis.

Examples:

"FHELinalg.concat"(%a, %b) { axis = 0 } : (tensor<3x3x!FHE.eint<4>>, tensor<3x3x!FHE.eint<4>>) -> tensor<6x3x!FHE.eint<4>>
//
//        ( [1,2,3]  [1,2,3] )   [1,2,3]
// concat ( [4,5,6], [4,5,6] ) = [4,5,6]
//        ( [7,8,9]  [7,8,9] )   [7,8,9]
//                               [1,2,3]
//                               [4,5,6]
//                               [7,8,9]
//
"FHELinalg.concat"(%a, %b) { axis = 1 } : (tensor<3x3x!FHE.eint<4>>, tensor<3x3x!FHE.eint<4>>) -> tensor<3x6x!FHE.eint<4>>
//
//        ( [1,2,3]  [1,2,3] )   [1,2,3,1,2,3]
// concat ( [4,5,6], [4,5,6] ) = [4,5,6,4,5,6]
//        ( [7,8,9]  [7,8,9] )   [7,8,9,7,8,9]
//

Traits: AlwaysSpeculatableImplTrait

Interfaces: ConditionallySpeculatable, NoMemoryEffect (MemoryEffectOpInterface)

Effects: MemoryEffects::Effect{}

Attributes:

Attribute
MLIR Type
Description

axis

::mlir::IntegerAttr

64-bit signless integer attribute

Operands:

Operand
Description

ins

Results:

Result
Description

out

FHELinalg.conv2d (::mlir::concretelang::FHELinalg::Conv2dOp)

Returns the 2D convolution of a tensor in the form NCHW with weights in the form FCHW

Traits: AlwaysSpeculatableImplTrait

Interfaces: Binary, BinaryEintInt, ConditionallySpeculatable, NoMemoryEffect (MemoryEffectOpInterface)

Effects: MemoryEffects::Effect{}

Attributes:

Attribute
MLIR Type
Description

padding

::mlir::DenseIntElementsAttr

64-bit signless integer elements attribute

strides

::mlir::DenseIntElementsAttr

64-bit signless integer elements attribute

dilations

::mlir::DenseIntElementsAttr

64-bit signless integer elements attribute

group

::mlir::IntegerAttr

64-bit signless integer attribute

Operands:

Operand
Description

input

weight

bias

Results:

Result
Description

«unnamed»

FHELinalg.dot_eint_int (::mlir::concretelang::FHELinalg::Dot)

Returns the encrypted dot product between a vector of encrypted integers and a vector of clean integers.

Performs a dot product between a vector of encrypted integers and a vector of clear integers.

Examples:

// Returns the dot product of `%a0` with `%a1`
"FHELinalg.dot_eint_int"(%a0, %a1) : (tensor<4x!FHE.eint<4>>, tensor<4xi5>) -> !FHE.eint<4>

Traits: AlwaysSpeculatableImplTrait

Interfaces: Binary, BinaryEintInt, ConditionallySpeculatable, NoMemoryEffect (MemoryEffectOpInterface)

Effects: MemoryEffects::Effect{}

Operands:

Operand
Description

lhs

rhs

Results:

Result
Description

out

FHELinalg.dot_eint_eint (::mlir::concretelang::FHELinalg::DotEint)

Returns the encrypted dot product between two vectors of encrypted integers.

Performs a dot product between two vectors of encrypted integers.

Examples:

// Returns the dot product of `%a0` with `%a1`
"FHELinalg.dot_eint_eint"(%a0, %a1) : (tensor<4x!FHE.eint<4>>, tensor<4x!FHE.eint<4>>) -> !FHE.eint<4>

Traits: AlwaysSpeculatableImplTrait

Interfaces: ConditionallySpeculatable, NoMemoryEffect (MemoryEffectOpInterface)

Effects: MemoryEffects::Effect{}

Operands:

Operand
Description

lhs

rhs

Results:

Result
Description

out

FHELinalg.from_element (::mlir::concretelang::FHELinalg::FromElementOp)

Creates a tensor with a single element.

Creates a tensor with a single element.

"FHELinalg.from_element"(%a) : (Type) -> tensor<1xType>

Traits: AlwaysSpeculatableImplTrait

Interfaces: ConditionallySpeculatable, NoMemoryEffect (MemoryEffectOpInterface)

Effects: MemoryEffects::Effect{}

Operands:

Operand
Description

«unnamed»

any type

Results:

Result
Description

«unnamed»

FHELinalg.matmul_eint_eint (::mlir::concretelang::FHELinalg::MatMulEintEintOp)

Returns a tensor that contains the result of the matrix multiplication of a matrix of encrypted integers and a second matrix of encrypted integers.

Performs a matrix multiplication of a matrix of encrypted integers and a second matrix of encrypted integers.

The behavior depends on the arguments in the following way:

- If both arguments are 2-D,
  they are multiplied like conventional matrices.

  e.g.,

  arg0: tensor<MxN> = [...]
  arg1: tensor<NxP> = [...]

  result: tensor<MxP> = [...]

- If the first argument is a vector (1-D),
  it is treated as a matrix with a single row and standard matrix multiplication is performed.

  After standard matrix multiplication,
  the first dimension is removed from the result.

  e.g.,

  arg0: tensor<3> = [x, y, z]
  arg1: tensor<3xM> = [
      [_, _, ..., _, _],
      [_, _, ..., _, _],
      [_, _, ..., _, _],
  ]

  is treated as

  arg0: tensor<1x3> = [
      [x, y, z]
  ]
  arg1: tensor<3xM> = [
      [_, _, ..., _, _],
      [_, _, ..., _, _],
      [_, _, ..., _, _],
  ]

  and matrix multiplication is performed with the following form (1x3 @ 3xM -> 1xM)

  result: tensor<1xM> = [[_, _, ..., _, _]]

  finally, the first dimension is removed by definition so the result has the following form

  result: tensor<M>  = [_, _, ..., _, _]

- If the second argument is 1-D,
  it is treated as a matrix with a single column and standard matrix multiplication is performed.

  After standard matrix multiplication,
  the last dimension is removed from the result.

  e.g.,

  arg0: tensor<Mx3> = [
      [_, _, _],
      [_, _, _],
      ...,
      [_, _, _],
      [_, _, _],
  ]
  arg1: tensor<3> = [x, y, z]

  is treated as

  arg0: tensor<Mx3> = [
      [_, _, _],
      [_, _, _],
      ...,
      [_, _, _],
      [_, _, _],
  ]
  arg1: tensor<3x1> = [
    [x],
    [y],
    [z],
  ]

  and matrix multiplication is performed with the following form (Mx3 @ 3x1 -> Mx1)

  result: tensor<Mx1> = [
    [_],
    [_],
      ...,
    [_],
    [_],
  ]

  finally, the last dimension is removed by definition so the result has the following form

  result: tensor<M> = [_, _, _]

- If either argument is N-D where N > 2,
  the operation is treated as a collection of matrices residing in the last two indices and broadcasted accordingly.

  arg0: tensor<Kx1MxN> = [...]
  arg1: tensor<LxNxP> = [...]

  result: tensor<KxLxMxP> = [...]
"FHELinalg.matmul_eint_eint(%a, %b) : (tensor<MxNx!FHE.eint<p>>, tensor<NxPx!FHE.eint<p>'>) -> tensor<MxPx!FHE.eint<p>>"
"FHELinalg.matmul_eint_eint(%a, %b) : (tensor<KxLxMxNx!FHE.eint<p>>, tensor<KxLxNxPx!FHE.eint<p>'>) -> tensor<KxLxMxPx!FHE.eint<p>>"
"FHELinalg.matmul_eint_eint(%a, %b) : (tensor<MxNx!FHE.eint<p>>, tensor<Nx!FHE.eint<p>'>) -> tensor<Mx!FHE.eint<p>>"
"FHELinalg.matmul_eint_eint(%a, %b) : (tensor<Nx!FHE.eint<p>>, tensor<NxPx!FHE.eint<p>'>) -> tensor<Px!FHE.eint<p>>"

Examples:

// Returns the matrix multiplication of a 3x2 matrix of encrypted integers and a 2x3 matrix of integers.
//         [ 1, 2, 3]
//         [ 2, 3, 4]
//       *
// [1,2]   [ 5, 8,11]
// [3,4] = [11,18,25]
// [5,6]   [17,28,39]
//
"FHELinalg.matmul_eint_eint"(%a, %b) : (tensor<3x2x!FHE.eint<6>>, tensor<2x3x!FHE.eint<6>>) -> tensor<3x3x!FHE.eint<12>>

Traits: AlwaysSpeculatableImplTrait, TensorBinaryEint

Interfaces: ConditionallySpeculatable, NoMemoryEffect (MemoryEffectOpInterface)

Effects: MemoryEffects::Effect{}

Operands:

Operand
Description

lhs

rhs

Results:

Result
Description

«unnamed»

FHELinalg.matmul_eint_int (::mlir::concretelang::FHELinalg::MatMulEintIntOp)

Returns a tensor that contains the result of the matrix multiplication of a matrix of encrypted integers and a matrix of clear integers.

Performs a matrix multiplication of a matrix of encrypted integers and a matrix of clear integers. The width of the clear integers must be less than or equal to the width of encrypted integers.

The behavior depends on the arguments in the following way:

- If both arguments are 2-D,
  they are multiplied like conventional matrices.

  e.g.,

  arg0: tensor<MxN> = [...]
  arg1: tensor<NxP> = [...]

  result: tensor<MxP> = [...]

- If the first argument is a vector (1-D),
  it is treated as a matrix with a single row and standard matrix multiplication is performed.

  After standard matrix multiplication,
  the first dimension is removed from the result.

  e.g.,

  arg0: tensor<3> = [x, y, z]
  arg1: tensor<3xM> = [
      [_, _, ..., _, _],
      [_, _, ..., _, _],
      [_, _, ..., _, _],
  ]

  is treated as

  arg0: tensor<1x3> = [
      [x, y, z]
  ]
  arg1: tensor<3xM> = [
      [_, _, ..., _, _],
      [_, _, ..., _, _],
      [_, _, ..., _, _],
  ]

  and matrix multiplication is performed with the following form (1x3 @ 3xM -> 1xM)

  result: tensor<1xM> = [[_, _, ..., _, _]]

  finally, the first dimension is removed by definition so the result has the following form

  result: tensor<M>  = [_, _, ..., _, _]

- If the second argument is 1-D,
  it is treated as a matrix with a single column and standard matrix multiplication is performed.

  After standard matrix multiplication,
  the last dimension is removed from the result.

  e.g.,

  arg0: tensor<Mx3> = [
      [_, _, _],
      [_, _, _],
      ...,
      [_, _, _],
      [_, _, _],
  ]
  arg1: tensor<3> = [x, y, z]

  is treated as

  arg0: tensor<Mx3> = [
      [_, _, _],
      [_, _, _],
      ...,
      [_, _, _],
      [_, _, _],
  ]
  arg1: tensor<3x1> = [
    [x],
    [y],
    [z],
  ]

  and matrix multiplication is performed with the following form (Mx3 @ 3x1 -> Mx1)

  result: tensor<Mx1> = [
    [_],
    [_],
      ...,
    [_],
    [_],
  ]

  finally, the last dimension is removed by definition so the result has the following form

  result: tensor<M> = [_, _, _]

- If either argument is N-D where N > 2,
  the operation is treated as a collection of matrices residing in the last two indices and broadcasted accordingly.

  arg0: tensor<Kx1MxN> = [...]
  arg1: tensor<LxNxP> = [...]

  result: tensor<KxLxMxP> = [...]
"FHELinalg.matmul_eint_int(%a, %b) : (tensor<MxNx!FHE.eint<p>>, tensor<NxPxip'>) -> tensor<MxPx!FHE.eint<p>>"
"FHELinalg.matmul_eint_int(%a, %b) : (tensor<KxLxMxNx!FHE.eint<p>>, tensor<KxLxNxPxip'>) -> tensor<KxLxMxPx!FHE.eint<p>>"
"FHELinalg.matmul_eint_int(%a, %b) : (tensor<MxNx!FHE.eint<p>>, tensor<Nxip'>) -> tensor<Mx!FHE.eint<p>>"
"FHELinalg.matmul_eint_int(%a, %b) : (tensor<Nx!FHE.eint<p>>, tensor<NxPxip'>) -> tensor<Px!FHE.eint<p>>"

Examples:

// Returns the matrix multiplication of a 3x2 matrix of encrypted integers and a 2x3 matrix of integers.
//         [ 1, 2, 3]
//         [ 2, 3, 4]
//       *
// [1,2]   [ 5, 8,11]
// [3,4] = [11,18,25]
// [5,6]   [17,28,39]
//
"FHELinalg.matmul_eint_int"(%a, %b) : (tensor<3x2x!FHE.eint<6>>, tensor<2x3xi7>) -> tensor<3x3x!FHE.eint<6>>

Traits: AlwaysSpeculatableImplTrait, TensorBinaryEintInt

Interfaces: Binary, BinaryEintInt, ConditionallySpeculatable, NoMemoryEffect (MemoryEffectOpInterface)

Effects: MemoryEffects::Effect{}

Operands:

Operand
Description

lhs

rhs

Results:

Result
Description

«unnamed»

FHELinalg.matmul_int_eint (::mlir::concretelang::FHELinalg::MatMulIntEintOp)

Returns a tensor that contains the result of the matrix multiplication of a matrix of clear integers and a matrix of encrypted integers.

Performs a matrix multiplication of a matrix of clear integers and a matrix of encrypted integers. The width of the clear integers must be less than or equal to the width of encrypted integers.

The behavior depends on the arguments in the following way:

- If both arguments are 2-D,
  they are multiplied like conventional matrices.

  e.g.,

  arg0: tensor<MxN> = [...]
  arg1: tensor<NxP> = [...]

  result: tensor<MxP> = [...]

- If the first argument is a vector (1-D),
  it is treated as a matrix with a single row and standard matrix multiplication is performed.

  After standard matrix multiplication,
  the first dimension is removed from the result.

  e.g.,

  arg0: tensor<3> = [x, y, z]
  arg1: tensor<3xM> = [
      [_, _, ..., _, _],
      [_, _, ..., _, _],
      [_, _, ..., _, _],
  ]

  is treated as

  arg0: tensor<1x3> = [
      [x, y, z]
  ]
  arg1: tensor<3xM> = [
      [_, _, ..., _, _],
      [_, _, ..., _, _],
      [_, _, ..., _, _],
  ]

  and matrix multiplication is performed with the following form (1x3 @ 3xM -> 1xM)

  result: tensor<1xM> = [[_, _, ..., _, _]]

  finally, the first dimension is removed by definition so the result has the following form

  result: tensor<M>  = [_, _, ..., _, _]

- If the second argument is 1-D,
  it is treated as a matrix with a single column and standard matrix multiplication is performed.

  After standard matrix multiplication,
  the last dimension is removed from the result.

  e.g.,

  arg0: tensor<Mx3> = [
      [_, _, _],
      [_, _, _],
      ...,
      [_, _, _],
      [_, _, _],
  ]
  arg1: tensor<3> = [x, y, z]

  is treated as

  arg0: tensor<Mx3> = [
      [_, _, _],
      [_, _, _],
      ...,
      [_, _, _],
      [_, _, _],
  ]
  arg1: tensor<3x1> = [
    [x],
    [y],
    [z],
  ]

  and matrix multiplication is performed with the following form (Mx3 @ 3x1 -> Mx1)

  result: tensor<Mx1> = [
    [_],
    [_],
      ...,
    [_],
    [_],
  ]

  finally, the last dimension is removed by definition so the result has the following form

  result: tensor<M> = [_, _, _]

- If either argument is N-D where N > 2,
  the operation is treated as a collection of matrices residing in the last two indices and broadcasted accordingly.

  arg0: tensor<Kx1MxN> = [...]
  arg1: tensor<LxNxP> = [...]

  result: tensor<KxLxMxP> = [...]
"FHELinalg.matmul_int_eint(%a, %b) : (tensor<MxNxip'>, tensor<NxPxFHE.eint<p>>) -> tensor<MxPx!FHE.eint<p>>"
"FHELinalg.matmul_int_eint(%a, %b) : (tensor<KxLxMxNxip'>, tensor<KxLxNxPxFHE.eint<p>>) -> tensor<KxLxMxPx!FHE.eint<p>>"
"FHELinalg.matmul_int_eint(%a, %b) : (tensor<MxNxip'>, tensor<NxFHE.eint<p>>) -> tensor<Mx!FHE.eint<p>>"
"FHELinalg.matmul_int_eint(%a, %b) : (tensor<Nxip'>, tensor<NxPxFHE.eint<p>>) -> tensor<Px!FHE.eint<p>>"

Examples:

// Returns the matrix multiplication of a 3x2 matrix of clear integers and a 2x3 matrix of encrypted integers.
//         [ 1, 2, 3]
//         [ 2, 3, 4]
//       *
// [1,2]   [ 5, 8,11]
// [3,4] = [11,18,25]
// [5,6]   [17,28,39]
//
"FHELinalg.matmul_int_eint"(%a, %b) : (tensor<3x2xi7>, tensor<2x3x!FHE.eint<6>>) -> tensor<3x3x!FHE.eint<6>>

Traits: AlwaysSpeculatableImplTrait, TensorBinaryIntEint

Interfaces: Binary, BinaryIntEint, ConditionallySpeculatable, NoMemoryEffect (MemoryEffectOpInterface)

Effects: MemoryEffects::Effect{}

Operands:

Operand
Description

lhs

rhs

Results:

Result
Description

«unnamed»

FHELinalg.maxpool2d (::mlir::concretelang::FHELinalg::Maxpool2dOp)

Returns the 2D maxpool of a tensor in the form NCHW

Interfaces: UnaryEint

Attributes:

Attribute
MLIR Type
Description

kernel_shape

::mlir::DenseIntElementsAttr

64-bit signless integer elements attribute

strides

::mlir::DenseIntElementsAttr

64-bit signless integer elements attribute

dilations

::mlir::DenseIntElementsAttr

64-bit signless integer elements attribute

Operands:

Operand
Description

input

Results:

Result
Description

«unnamed»

FHELinalg.mul_eint_int (::mlir::concretelang::FHELinalg::MulEintIntOp)

Returns a tensor that contains the multiplication of a tensor of encrypted integers and a tensor of clear integers.

Performs a multiplication following the broadcasting rules between a tensor of encrypted integers and a tensor of clear integers. The width of the clear integers must be less than or equal to the width of encrypted integers.

Examples:

// Returns the term-by-term multiplication of `%a0` with `%a1`
"FHELinalg.mul_eint_int"(%a0, %a1) : (tensor<4x!FHE.eint<4>>, tensor<4xi5>) -> tensor<4x!FHE.eint<4>>

// Returns the term-by-term multiplication of `%a0` with `%a1`, where dimensions equal to one are stretched.
"FHELinalg.mul_eint_int"(%a0, %a1) : (tensor<4x1x4x!FHE.eint<4>>, tensor<1x4x4xi5>) -> tensor<4x4x4x!FHE.eint<4>>

// Returns the multiplication of a 3x3 matrix of encrypted integers and a 3x1 matrix (a column) of integers.
//
// [1,2,3]   [1]   [1,2,3]
// [4,5,6] * [2] = [8,10,18]
// [7,8,9]   [3]   [21,24,27]
//
// The dimension #1 of operand #2 is stretched as it is equal to 1.
"FHELinalg.mul_eint_int"(%a0, %a1) : (tensor<3x3x!FHE.eint<4>>, tensor<3x1xi5>) -> tensor<3x3x!FHE.eint<4>>

// Returns the multiplication of a 3x3 matrix of encrypted integers and a 1x3 matrix (a line) of integers.
//
// [1,2,3]             [2,4,6]
// [4,5,6] * [1,2,3] = [5,7,9]
// [7,8,9]             [8,10,12]
//
// The dimension #2 of operand #2 is stretched as it is equal to 1.
"FHELinalg.mul_eint_int"(%a0, %a1) : (tensor<3x3x!FHE.eint<4>>, tensor<1x3xi5>) -> tensor<3x3x!FHE.eint<4>>

// Same behavior as the previous one, but as the dimension #2 is missing of operand #2.
"FHELinalg.mul_eint_int"(%a0, %a1) : (tensor<3x3x!FHE.eint<4>>, tensor<3xi5>) -> tensor<3x3x!FHE.eint<4>>

Traits: AlwaysSpeculatableImplTrait, TensorBinaryEintInt, TensorBroadcastingRules

Interfaces: Binary, BinaryEintInt, ConditionallySpeculatable, NoMemoryEffect (MemoryEffectOpInterface)

Effects: MemoryEffects::Effect{}

Operands:

Operand
Description

lhs

rhs

Results:

Result
Description

«unnamed»

FHELinalg.mul_eint (::mlir::concretelang::FHELinalg::MulEintOp)

Returns a tensor that contains the multiplication of two tensor of encrypted integers.

Performs an addition following the broadcasting rules between two tensors of encrypted integers. The width of the encrypted integers must be equal.

Examples:

// Returns the term-by-term multiplication of `%a0` with `%a1`
"FHELinalg.mul_eint"(%a0, %a1) : (tensor<4x!FHE.eint<8>>, tensor<4x!FHE.eint<8>>) -> tensor<4x!FHE.eint<8>>

// Returns the term-by-term multiplication of `%a0` with `%a1`, where dimensions equal to one are stretched.
"FHELinalg.mul_eint"(%a0, %a1) : (tensor<4x1x4x!FHE.eint<8>>, tensor<1x4x4x!FHE.eint<8>>) -> tensor<4x4x4x!FHE.eint<8>>

// Returns the multiplication of a 3x3 matrix of encrypted integers and a 3x1 matrix (a column) of encrypted integers.
//
// [1,2,3]   [1]   [1,2,3]
// [4,5,6] * [2] = [8,10,12]
// [7,8,9]   [3]   [21,24,27]
//
// The dimension #1 of operand #2 is stretched as it is equal to 1.
"FHELinalg.mul_eint"(%a0, %a1) : (tensor<3x3x!FHE.eint<8>>, tensor<3x1x!FHE.eint<8>>) -> tensor<3x3x!FHE.eint<8>>

// Returns the multiplication of a 3x3 matrix of encrypted integers and a 1x3 matrix (a line) of encrypted integers.
//
// [1,2,3]             [1,4,9]
// [4,5,6] * [1,2,3] = [4,10,18]
// [7,8,9]             [7,16,27]
//
// The dimension #2 of operand #2 is stretched as it is equal to 1.
"FHELinalg.mul_eint"(%a0, %a1) : (tensor<3x3x!FHE.eint<8>>, tensor<1x3x!FHE.eint<8>>) -> tensor<3x3x!FHE.eint<8>>

// Same behavior as the previous one, but as the dimension #2 of operand #2 is missing.
"FHELinalg.mul_eint"(%a0, %a1) : (tensor<3x3x!FHE.eint<8>>, tensor<3x!FHE.eint<8>>) -> tensor<3x3x!FHE.eint<8>>

Traits: AlwaysSpeculatableImplTrait, TensorBinaryEint, TensorBroadcastingRules

Interfaces: BinaryEint, ConditionallySpeculatable, NoMemoryEffect (MemoryEffectOpInterface)

Effects: MemoryEffects::Effect{}

Operands:

Operand
Description

lhs

rhs

Results:

Result
Description

«unnamed»

FHELinalg.neg_eint (::mlir::concretelang::FHELinalg::NegEintOp)

Returns a tensor that contains the negation of a tensor of encrypted integers.

Performs a negation to a tensor of encrypted integers.

Examples:

// Returns the term-by-term negation of `%a0`
"FHELinalg.neg_eint"(%a0) : (tensor<3x3x!FHE.eint<4>>) -> tensor<3x3x!FHE.eint<4>>
//
//        ( [1,2,3] )   [31,30,29]
// negate ( [4,5,6] ) = [28,27,26]
//        ( [7,8,9] )   [25,24,23]
//
// The negation is computed as `2**(p+1) - a` where p=4 here.

Traits: AlwaysSpeculatableImplTrait, TensorUnaryEint

Interfaces: ConditionallySpeculatable, NoMemoryEffect (MemoryEffectOpInterface), UnaryEint

Effects: MemoryEffects::Effect{}

Operands:

Operand
Description

tensor

Results:

Result
Description

«unnamed»

FHELinalg.round (::mlir::concretelang::FHELinalg::RoundOp)

Rounds a tensor of ciphertexts into a smaller precision.

  Assuming a ciphertext whose message is implemented over `p` bits, this
  operation rounds it to fit to `q` bits where `p>q`.

  Example:
  ```mlir
  // ok
  "FHELinalg.round"(%a): (tensor<3x!FHE.eint<6>>) -> (tensor<3x!FHE.eint<5>>)
  "FHELinalg.round"(%a): (tensor<3x!FHE.eint<5>>) -> (tensor<3x!FHE.eint<3>>)
  "FHELinalg.round"(%a): (tensor<3x!FHE.eint<3>>) -> (tensor<3x!FHE.eint<2>>)
  "FHELinalg.round"(%a): (tensor<3x!FHE.esint<3>>) -> (tensor<3x!FHE.esint<2>>)

  // error
  "FHELinalg.round"(%a): (tensor<3x!FHE.eint<6>>) -> (tensor<3x!FHE.eint<6>>)
  "FHELinalg.round"(%a): (tensor<3x!FHE.eint<4>>) -> (tensor<3x!FHE.eint<5>>)
  "FHELinalg.round"(%a): (tensor<3x!FHE.eint<4>>) -> (tensor<3x!FHE.esint<2>>)

Traits: AlwaysSpeculatableImplTrait, TensorUnaryEint

Interfaces: ConditionallySpeculatable, NoMemoryEffect (MemoryEffectOpInterface), UnaryEint

Effects: MemoryEffects::Effect{}

#### Operands:

| Operand | Description |
| :-----: | ----------- |
| `input` | 

#### Results:

| Result | Description |
| :----: | ----------- |
| `output` | 

### `FHELinalg.sub_eint_int` (::mlir::concretelang::FHELinalg::SubEintIntOp)

Returns a tensor that contains the subtraction of a tensor of clear integers from a tensor of encrypted integers.

Performs a subtraction following the broadcasting rules between a tensor of clear integers from a tensor of encrypted integers.
The width of the clear integers must be less than or equal to the width of encrypted integers.

Examples:
```mlir
// Returns the term-by-term subtraction of `%a0` with `%a1`
"FHELinalg.sub_eint_int"(%a0, %a1) : (tensor<4x!FHE.eint<4>>, tensor<4xi5>) -> tensor<4x!FHE.eint<4>>

// Returns the term-by-term subtraction of `%a0` with `%a1`, where dimensions equal to one are stretched.
"FHELinalg.sub_eint_int"(%a0, %a1) : (tensor<1x4x4x!FHE.eint<4>>, tensor<4x1x4xi5>) -> tensor<4x4x4x!FHE.eint<4>>

// Returns the subtraction of a 3x3 matrix of integers and a 3x1 matrix (a column) of encrypted integers.
//
// [1,2,3]   [1]   [0,2,3]
// [4,5,6] - [2] = [2,3,4]
// [7,8,9]   [3]   [4,5,6]
//
// The dimension #1 of operand #2 is stretched as it is equal to 1.
"FHELinalg.sub_eint_int"(%a0, %a1) : (tensor<3x1x!FHE.eint<4>>, tensor<3x3xi5>) -> tensor<3x3x!FHE.eint<4>>

// Returns the subtraction of a 3x3 matrix of integers and a 1x3 matrix (a line) of encrypted integers.
//
// [1,2,3]             [0,0,0]
// [4,5,6] - [1,2,3] = [3,3,3]
// [7,8,9]             [6,6,6]
//
// The dimension #2 of operand #2 is stretched as it is equal to 1.
"FHELinalg.sub_eint_int"(%a0, %a1) : (tensor<1x3x!FHE.eint<4>>, tensor<3x3xi5>) -> tensor<3x3x!FHE.eint<4>>

// Same behavior as the previous one, but as the dimension #2 is missing of operand #2.
"FHELinalg.sub_eint_int"(%a0, %a1) : (tensor<3x!FHE.eint<4>>, tensor<3x3xi5>) -> tensor<3x3x!FHE.eint<4>>

Traits: AlwaysSpeculatableImplTrait, TensorBinaryEintInt, TensorBroadcastingRules

Interfaces: Binary, BinaryEintInt, ConditionallySpeculatable, NoMemoryEffect (MemoryEffectOpInterface)

Effects: MemoryEffects::Effect{}

Operands:

Operand
Description

lhs

rhs

Results:

Result
Description

«unnamed»

FHELinalg.sub_eint (::mlir::concretelang::FHELinalg::SubEintOp)

Returns a tensor that contains the subtraction of two tensor of encrypted integers.

Performs an subtraction following the broadcasting rules between two tensors of encrypted integers. The width of the encrypted integers must be equal.

Examples:

// Returns the term-by-term subtraction of `%a0` with `%a1`
"FHELinalg.sub_eint"(%a0, %a1) : (tensor<4x!FHE.eint<4>>, tensor<4x!FHE.eint<4>>) -> tensor<4x!FHE.eint<4>>

// Returns the term-by-term subtraction of `%a0` with `%a1`, where dimensions equal to one are stretched.
"FHELinalg.sub_eint"(%a0, %a1) : (tensor<4x1x4x!FHE.eint<4>>, tensor<1x4x4x!FHE.eint<4>>) -> tensor<4x4x4x!FHE.eint<4>>

// Returns the subtraction of a 3x3 matrix of integers and a 3x1 matrix (a column) of encrypted integers.
//
// [1,2,3]   [1]   [0,2,3]
// [4,5,6] - [2] = [2,3,4]
// [7,8,9]   [3]   [4,5,6]
//
// The dimension #1 of operand #2 is stretched as it is equal to 1.
"FHELinalg.sub_eint"(%a0, %a1) : (tensor<3x3x!FHE.eint<4>>, tensor<3x1x!FHE.eint<4>>) -> tensor<3x3x!FHE.eint<4>>

// Returns the subtraction of a 3x3 matrix of integers and a 1x3 matrix (a line) of encrypted integers.
//
// [1,2,3]             [0,0,0]
// [4,5,6] - [1,2,3] = [3,3,3]
// [7,8,9]             [6,6,6]
//
// The dimension #2 of operand #2 is stretched as it is equal to 1.
"FHELinalg.sub_eint"(%a0, %a1) : (tensor<3x3x!FHE.eint<4>>, tensor<1x3x!FHE.eint<4>>) -> tensor<3x3x!FHE.eint<4>>

// Same behavior as the previous one, but as the dimension #2 of operand #2 is missing.
"FHELinalg.sub_eint"(%a0, %a1) : (tensor<3x3x!FHE.eint<4>>, tensor<3x!FHE.eint<4>>) -> tensor<3x3x!FHE.eint<4>>

Traits: AlwaysSpeculatableImplTrait, TensorBinaryEint, TensorBroadcastingRules

Interfaces: BinaryEint, ConditionallySpeculatable, NoMemoryEffect (MemoryEffectOpInterface)

Effects: MemoryEffects::Effect{}

Operands:

Operand
Description

lhs

rhs

Results:

Result
Description

«unnamed»

FHELinalg.sub_int_eint (::mlir::concretelang::FHELinalg::SubIntEintOp)

Returns a tensor that contains the subtraction of a tensor of clear integers and a tensor of encrypted integers.

Performs a subtraction following the broadcasting rules between a tensor of clear integers and a tensor of encrypted integers. The width of the clear integers must be less than or equal to the width of encrypted integers.

Examples:

// Returns the term-by-term subtraction of `%a0` with `%a1`
"FHELinalg.sub_int_eint"(%a0, %a1) : (tensor<4xi5>, tensor<4x!FHE.eint<4>>) -> tensor<4x!FHE.eint<4>>

// Returns the term-by-term subtraction of `%a0` with `%a1`, where dimensions equal to one are stretched.
"FHELinalg.sub_int_eint"(%a0, %a1) : (tensor<4x1x4xi5>, tensor<1x4x4x!FHE.eint<4>>) -> tensor<4x4x4x!FHE.eint<4>>

// Returns the subtraction of a 3x3 matrix of integers and a 3x1 matrix (a column) of encrypted integers.
//
// [1,2,3]   [1]   [0,2,3]
// [4,5,6] - [2] = [2,3,4]
// [7,8,9]   [3]   [4,5,6]
//
// The dimension #1 of operand #2 is stretched as it is equal to 1.
"FHELinalg.sub_int_eint"(%a0, %a1) : (tensor<3x3xi5>, tensor<3x1x!FHE.eint<4>>) -> tensor<3x3x!FHE.eint<4>>

// Returns the subtraction of a 3x3 matrix of integers and a 1x3 matrix (a line) of encrypted integers.
//
// [1,2,3]             [0,0,0]
// [4,5,6] - [1,2,3] = [3,3,3]
// [7,8,9]             [6,6,6]
//
// The dimension #2 of operand #2 is stretched as it is equal to 1.
"FHELinalg.sub_int_eint"(%a0, %a1) : (tensor<3x3xi5>, tensor<1x3x!FHE.eint<4>>) -> tensor<3x3x!FHE.eint<4>>

// Same behavior as the previous one, but as the dimension #2 is missing of operand #2.
"FHELinalg.sub_int_eint"(%a0, %a1) : (tensor<3x3xi5>, tensor<3x!FHE.eint<4>>) -> tensor<3x3x!FHE.eint<4>>

Traits: AlwaysSpeculatableImplTrait, TensorBinaryIntEint, TensorBroadcastingRules

Interfaces: Binary, BinaryIntEint, ConditionallySpeculatable, NoMemoryEffect (MemoryEffectOpInterface)

Effects: MemoryEffects::Effect{}

Operands:

Operand
Description

lhs

rhs

Results:

Result
Description

«unnamed»

FHELinalg.sum (::mlir::concretelang::FHELinalg::SumOp)

Returns the sum of elements of a tensor of encrypted integers along specified axes.

Attributes:

  • keep_dims: boolean = false whether to keep the rank of the tensor after the sum operation if true, reduced axes will have the size of 1

  • axes: I64ArrayAttr = [] list of dimension to perform the sum along think of it as the dimensions to reduce (see examples below to get an intuition)

Examples:

// Returns the sum of all elements of `%a0`
"FHELinalg.sum"(%a0) : (tensor<3x3x!FHE.eint<4>>) -> !FHE.eint<4>
//
//     ( [1,2,3] )
// sum ( [4,5,6] ) = 45
//     ( [7,8,9] )
//
// Returns the sum of all elements of `%a0` along columns
"FHELinalg.sum"(%a0) { axes = [0] } : (tensor<3x2x!FHE.eint<4>>) -> tensor<2x!FHE.eint<4>>
//
//     ( [1,2] )
// sum ( [3,4] ) = [9, 12]
//     ( [5,6] )
//
// Returns the sum of all elements of `%a0` along columns while preserving dimensions
"FHELinalg.sum"(%a0) { axes = [0], keep_dims = true } : (tensor<3x2x!FHE.eint<4>>) -> tensor<1x2x!FHE.eint<4>>
//
//     ( [1,2] )
// sum ( [3,4] ) = [[9, 12]]
//     ( [5,6] )
//
// Returns the sum of all elements of `%a0` along rows
"FHELinalg.sum"(%a0) { axes = [1] } : (tensor<3x2x!FHE.eint<4>>) -> tensor<3x!FHE.eint<4>>
//
//     ( [1,2] )
// sum ( [3,4] ) = [3, 7, 11]
//     ( [5,6] )
//
// Returns the sum of all elements of `%a0` along rows while preserving dimensions
"FHELinalg.sum"(%a0) { axes = [1], keep_dims = true } : (tensor<3x2x!FHE.eint<4>>) -> tensor<3x1x!FHE.eint<4>>
//
//     ( [1,2] )   [3]
// sum ( [3,4] ) = [7]
//     ( [5,6] )   [11]
//

Traits: AlwaysSpeculatableImplTrait, TensorUnaryEint

Interfaces: ConditionallySpeculatable, NoMemoryEffect (MemoryEffectOpInterface)

Effects: MemoryEffects::Effect{}

Attributes:

Attribute
MLIR Type
Description

axes

::mlir::ArrayAttr

64-bit integer array attribute

keep_dims

::mlir::BoolAttr

bool attribute

Operands:

Operand
Description

tensor

Results:

Result
Description

out

FHELinalg.to_signed (::mlir::concretelang::FHELinalg::ToSignedOp)

Cast an unsigned integer tensor to a signed one

Cast an unsigned integer tensor to a signed one. The result must have the same width and the same shape as the input.

The behavior is undefined on overflow/underflow.

Examples:

// ok
"FHELinalg.to_signed"(%x) : (tensor<3x2x!FHE.eint<2>>) -> tensor<3x2x!FHE.esint<2>>

// error
"FHELinalg.to_signed"(%x) : (tensor<3x2x!FHE.eint<2>>) -> tensor<3x2x!FHE.esint<3>>

Traits: AlwaysSpeculatableImplTrait

Interfaces: ConditionallySpeculatable, NoMemoryEffect (MemoryEffectOpInterface), UnaryEint

Effects: MemoryEffects::Effect{}

Operands:

Operand
Description

input

Results:

Result
Description

output

FHELinalg.to_unsigned (::mlir::concretelang::FHELinalg::ToUnsignedOp)

Cast a signed integer tensor to an unsigned one

Cast a signed integer tensor to an unsigned one. The result must have the same width and the same shape as the input.

The behavior is undefined on overflow/underflow.

Examples:

// ok
"FHELinalg.to_unsigned"(%x) : (tensor<3x2x!FHE.esint<2>>) -> tensor<3x2x!FHE.eint<2>>

// error
"FHELinalg.to_unsigned"(%x) : (tensor<3x2x!FHE.esint<2>>) -> tensor<3x2x!FHE.eint<3>>

Traits: AlwaysSpeculatableImplTrait

Interfaces: ConditionallySpeculatable, NoMemoryEffect (MemoryEffectOpInterface), UnaryEint

Effects: MemoryEffects::Effect{}

Operands:

Operand
Description

input

Results:

Result
Description

output

FHELinalg.transpose (::mlir::concretelang::FHELinalg::TransposeOp)

Returns a tensor that contains the transposition of the input tensor.

Performs a transpose operation on an N-dimensional tensor.

Attributes:

  • axes: I64ArrayAttr = [] list of dimension to perform the transposition contains a permutation of [0,1,..,N-1] where N is the number of axes think of it as a way to rearrange axes (see the example below)

"FHELinalg.transpose"(%a) : (tensor<n0xn1x...xnNxType>) -> tensor<nNx...xn1xn0xType>

Examples:

// Transpose the input tensor
// [1,2]    [1, 3, 5]
// [3,4] => [2, 4, 6]
// [5,6]
//
"FHELinalg.transpose"(%a) : (tensor<3x2xi7>) -> tensor<2x3xi7>
"FHELinalg.transpose"(%a) { axes = [1, 3, 0, 2] } : (tensor<2x3x4x5xi7>) -> tensor<3x5x2x4xi7>

Traits: AlwaysSpeculatableImplTrait

Interfaces: ConditionallySpeculatable, NoMemoryEffect (MemoryEffectOpInterface), UnaryEint

Effects: MemoryEffects::Effect{}

Attributes:

Attribute
MLIR Type
Description

axes

::mlir::ArrayAttr

64-bit integer array attribute

Operands:

Operand
Description

tensor

any type

Results:

Result
Description

«unnamed»

any type

Frontend fusing

Fusing is the act of combining multiple nodes into a single node, which is converted to a table lookup.

How is it done?

Code related to fusing is in the frontends/concrete-python/concrete/fhe/compilation/utils.py file. Fusing can be performed using the fuse function.

Within fuse:

  1. We loop until there are no more subgraphs to fuse.

  2. Within each iteration: 2.1. We find a subgraph to fuse.

    2.2. We search for a terminal node that is appropriate for fusing.

    2.3. We crawl backwards to find the closest integer nodes to this node.

    2.4. If there is a single node as such, we return the subgraph from this node to the terminal node.

    2.5. Otherwise, we try to find the lowest common ancestor (lca) of this list of nodes.

    2.6. If an lca doesn't exist, we say this particular terminal node is not fusable, and we go back to search for another subgraph.

    2.7. Otherwise, we use this lca as the input of the subgraph and continue with subgraph node creation below.

    2.8. We convert the subgraph into a subgraph node by checking fusability status of the nodes of the subgraph in this step.

    2.9. We substitute the subgraph node to the original graph.

Limitations

With the current implementation, we cannot fuse subgraphs that depend on multiple encrypted values where those values don't have a common lca (e.g., np.round(np.sin(x) + np.cos(y))).

TFHE Dialect

High Level Fully Homomorphic Encryption dialect A dialect for representation of high level operation on fully homomorphic ciphertext.

Operation definition

TFHE.batched_add_glwe_cst_int (::mlir::concretelang::TFHE::ABatchedAddGLWECstIntOp)

Batched version of AddGLWEIntOp

Traits: AlwaysSpeculatableImplTrait

Interfaces: ConditionallySpeculatable, NoMemoryEffect (MemoryEffectOpInterface)

Effects: MemoryEffects::Effect{}

Operands:

Operand
Description

ciphertext

A GLWE ciphertext

plaintexts

1D tensor of integer values

Results:

Result
Description

result

1D tensor of A GLWE ciphertext values

TFHE.batched_add_glwe_int_cst (::mlir::concretelang::TFHE::ABatchedAddGLWEIntCstOp)

Batched version of AddGLWEIntOp

Traits: AlwaysSpeculatableImplTrait

Interfaces: ConditionallySpeculatable, NoMemoryEffect (MemoryEffectOpInterface)

Effects: MemoryEffects::Effect{}

Operands:

Operand
Description

ciphertexts

1D tensor of A GLWE ciphertext values

plaintext

integer

Results:

Result
Description

result

1D tensor of A GLWE ciphertext values

TFHE.batched_add_glwe_int (::mlir::concretelang::TFHE::ABatchedAddGLWEIntOp)

Batched version of AddGLWEIntOp

Traits: AlwaysSpeculatableImplTrait

Interfaces: ConditionallySpeculatable, NoMemoryEffect (MemoryEffectOpInterface)

Effects: MemoryEffects::Effect{}

Operands:

Operand
Description

ciphertexts

1D tensor of A GLWE ciphertext values

plaintexts

1D tensor of integer values

Results:

Result
Description

result

1D tensor of A GLWE ciphertext values

TFHE.batched_add_glwe (::mlir::concretelang::TFHE::ABatchedAddGLWEOp)

Batched version of AddGLWEOp

Traits: AlwaysSpeculatableImplTrait

Interfaces: ConditionallySpeculatable, NoMemoryEffect (MemoryEffectOpInterface)

Effects: MemoryEffects::Effect{}

Operands:

Operand
Description

ciphertexts_a

1D tensor of A GLWE ciphertext values

ciphertexts_b

1D tensor of A GLWE ciphertext values

Results:

Result
Description

result

1D tensor of A GLWE ciphertext values

TFHE.add_glwe_int (::mlir::concretelang::TFHE::AddGLWEIntOp)

Returns the sum of a clear integer and an lwe ciphertext

Traits: AlwaysSpeculatableImplTrait

Interfaces: BatchableOpInterface, ConditionallySpeculatable, NoMemoryEffect (MemoryEffectOpInterface)

Effects: MemoryEffects::Effect{}

Operands:

Operand
Description

a

A GLWE ciphertext

b

integer

Results:

Result
Description

«unnamed»

A GLWE ciphertext

TFHE.add_glwe (::mlir::concretelang::TFHE::AddGLWEOp)

Returns the sum of two lwe ciphertexts

Traits: AlwaysSpeculatableImplTrait

Interfaces: BatchableOpInterface, ConditionallySpeculatable, NoMemoryEffect (MemoryEffectOpInterface)

Effects: MemoryEffects::Effect{}

Operands:

Operand
Description

a

A GLWE ciphertext

b

A GLWE ciphertext

Results:

Result
Description

«unnamed»

A GLWE ciphertext

TFHE.batched_bootstrap_glwe (::mlir::concretelang::TFHE::BatchedBootstrapGLWEOp)

Batched version of KeySwitchGLWEOp

Traits: AlwaysSpeculatableImplTrait

Interfaces: ConditionallySpeculatable, NoMemoryEffect (MemoryEffectOpInterface)

Effects: MemoryEffects::Effect{}

Attributes:

Attribute
MLIR Type
Description

key

::mlir::concretelang::TFHE::GLWEBootstrapKeyAttr

An attribute representing bootstrap key.

Operands:

Operand
Description

ciphertexts

1D tensor of A GLWE ciphertext values

lookup_table

1D tensor of 64-bit signless integer values

Results:

Result
Description

result

1D tensor of A GLWE ciphertext values

TFHE.batched_keyswitch_glwe (::mlir::concretelang::TFHE::BatchedKeySwitchGLWEOp)

Batched version of KeySwitchGLWEOp

Traits: AlwaysSpeculatableImplTrait

Interfaces: ConditionallySpeculatable, NoMemoryEffect (MemoryEffectOpInterface)

Effects: MemoryEffects::Effect{}

Attributes:

Attribute
MLIR Type
Description

key

::mlir::concretelang::TFHE::GLWEKeyswitchKeyAttr

An attribute representing keyswitch key.

Operands:

Operand
Description

ciphertexts

1D tensor of A GLWE ciphertext values

Results:

Result
Description

result

1D tensor of A GLWE ciphertext values

TFHE.batched_mapped_bootstrap_glwe (::mlir::concretelang::TFHE::BatchedMappedBootstrapGLWEOp)

Batched version of KeySwitchGLWEOp which also batches the lookup table

Traits: AlwaysSpeculatableImplTrait

Interfaces: ConditionallySpeculatable, NoMemoryEffect (MemoryEffectOpInterface)

Effects: MemoryEffects::Effect{}

Attributes:

Attribute
MLIR Type
Description

key

::mlir::concretelang::TFHE::GLWEBootstrapKeyAttr

An attribute representing bootstrap key.

Operands:

Operand
Description

ciphertexts

1D tensor of A GLWE ciphertext values

lookup_table

2D tensor of 64-bit signless integer values

Results:

Result
Description

result

1D tensor of A GLWE ciphertext values

TFHE.batched_mul_glwe_cst_int (::mlir::concretelang::TFHE::BatchedMulGLWECstIntOp)

Batched version of MulGLWEIntOp

Traits: AlwaysSpeculatableImplTrait

Interfaces: ConditionallySpeculatable, NoMemoryEffect (MemoryEffectOpInterface)

Effects: MemoryEffects::Effect{}

Operands:

Operand
Description

ciphertext

A GLWE ciphertext

cleartexts

1D tensor of integer values

Results:

Result
Description

result

1D tensor of A GLWE ciphertext values

TFHE.batched_mul_glwe_int_cst (::mlir::concretelang::TFHE::BatchedMulGLWEIntCstOp)

Batched version of MulGLWEIntOp

Traits: AlwaysSpeculatableImplTrait

Interfaces: ConditionallySpeculatable, NoMemoryEffect (MemoryEffectOpInterface)

Effects: MemoryEffects::Effect{}

Operands:

Operand
Description

ciphertexts

1D tensor of A GLWE ciphertext values

cleartext

integer

Results:

Result
Description

result

1D tensor of A GLWE ciphertext values

TFHE.batched_mul_glwe_int (::mlir::concretelang::TFHE::BatchedMulGLWEIntOp)

Batched version of MulGLWEIntOp

Traits: AlwaysSpeculatableImplTrait

Interfaces: ConditionallySpeculatable, NoMemoryEffect (MemoryEffectOpInterface)

Effects: MemoryEffects::Effect{}

Operands:

Operand
Description

ciphertexts

1D tensor of A GLWE ciphertext values

cleartexts

1D tensor of integer values

Results:

Result
Description

result

1D tensor of A GLWE ciphertext values

TFHE.batched_neg_glwe (::mlir::concretelang::TFHE::BatchedNegGLWEOp)

Batched version of NegGLWEOp

Traits: AlwaysSpeculatableImplTrait

Interfaces: ConditionallySpeculatable, NoMemoryEffect (MemoryEffectOpInterface)

Effects: MemoryEffects::Effect{}

Operands:

Operand
Description

ciphertexts

1D tensor of A GLWE ciphertext values

Results:

Result
Description

result

1D tensor of A GLWE ciphertext values

TFHE.bootstrap_glwe (::mlir::concretelang::TFHE::BootstrapGLWEOp)

Programmable bootstraping of a GLWE ciphertext with a lookup table

Traits: AlwaysSpeculatableImplTrait

Interfaces: BatchableOpInterface, ConditionallySpeculatable, NoMemoryEffect (MemoryEffectOpInterface)

Effects: MemoryEffects::Effect{}

Attributes:

Attribute
MLIR Type
Description

key

::mlir::concretelang::TFHE::GLWEBootstrapKeyAttr

An attribute representing bootstrap key.

Operands:

Operand
Description

ciphertext

A GLWE ciphertext

lookup_table

1D tensor of 64-bit signless integer values

Results:

Result
Description

result

A GLWE ciphertext

TFHE.encode_expand_lut_for_bootstrap (::mlir::concretelang::TFHE::EncodeExpandLutForBootstrapOp)

Encode and expand a lookup table so that it can be used for a bootstrap.

Traits: AlwaysSpeculatableImplTrait

Interfaces: ConditionallySpeculatable, NoMemoryEffect (MemoryEffectOpInterface)

Effects: MemoryEffects::Effect{}

Attributes:

Attribute
MLIR Type
Description

polySize

::mlir::IntegerAttr

32-bit signless integer attribute

outputBits

::mlir::IntegerAttr

32-bit signless integer attribute

isSigned

::mlir::BoolAttr

bool attribute

Operands:

Operand
Description

input_lookup_table

1D tensor of 64-bit signless integer values

Results:

Result
Description

result

1D tensor of 64-bit signless integer values

TFHE.encode_lut_for_crt_woppbs (::mlir::concretelang::TFHE::EncodeLutForCrtWopPBSOp)

Encode and expand a lookup table so that it can be used for a wop pbs.

Traits: AlwaysSpeculatableImplTrait

Interfaces: ConditionallySpeculatable, NoMemoryEffect (MemoryEffectOpInterface)

Effects: MemoryEffects::Effect{}

Attributes:

Attribute
MLIR Type
Description

crtDecomposition

::mlir::ArrayAttr

64-bit integer array attribute

crtBits

::mlir::ArrayAttr

64-bit integer array attribute

modulusProduct

::mlir::IntegerAttr

32-bit signless integer attribute

isSigned

::mlir::BoolAttr

bool attribute

Operands:

Operand
Description

input_lookup_table

1D tensor of 64-bit signless integer values

Results:

Result
Description

result

2D tensor of 64-bit signless integer values

TFHE.encode_plaintext_with_crt (::mlir::concretelang::TFHE::EncodePlaintextWithCrtOp)

Encodes a plaintext by decomposing it on a crt basis.

Traits: AlwaysSpeculatableImplTrait

Interfaces: ConditionallySpeculatable, NoMemoryEffect (MemoryEffectOpInterface)

Effects: MemoryEffects::Effect{}

Attributes:

Attribute
MLIR Type
Description

mods

::mlir::ArrayAttr

64-bit integer array attribute

modsProd

::mlir::IntegerAttr

64-bit signless integer attribute

Operands:

Operand
Description

input

64-bit signless integer

Results:

Result
Description

result

1D tensor of 64-bit signless integer values

TFHE.keyswitch_glwe (::mlir::concretelang::TFHE::KeySwitchGLWEOp)

Change the encryption parameters of a glwe ciphertext by applying a keyswitch

Traits: AlwaysSpeculatableImplTrait

Interfaces: BatchableOpInterface, ConditionallySpeculatable, NoMemoryEffect (MemoryEffectOpInterface)

Effects: MemoryEffects::Effect{}

Attributes:

Attribute
MLIR Type
Description

key

::mlir::concretelang::TFHE::GLWEKeyswitchKeyAttr

An attribute representing keyswitch key.

Operands:

Operand
Description

ciphertext

A GLWE ciphertext

Results:

Result
Description

result

A GLWE ciphertext

TFHE.mul_glwe_int (::mlir::concretelang::TFHE::MulGLWEIntOp)

Returns the product of a clear integer and an lwe ciphertext

Traits: AlwaysSpeculatableImplTrait

Interfaces: BatchableOpInterface, ConditionallySpeculatable, NoMemoryEffect (MemoryEffectOpInterface)

Effects: MemoryEffects::Effect{}

Operands:

Operand
Description

a

A GLWE ciphertext

b

integer

Results:

Result
Description

«unnamed»

A GLWE ciphertext

TFHE.neg_glwe (::mlir::concretelang::TFHE::NegGLWEOp)

Negates a glwe ciphertext

Traits: AlwaysSpeculatableImplTrait

Interfaces: BatchableOpInterface, ConditionallySpeculatable, NoMemoryEffect (MemoryEffectOpInterface)

Effects: MemoryEffects::Effect{}

Operands:

Operand
Description

a

A GLWE ciphertext

Results:

Result
Description

«unnamed»

A GLWE ciphertext

TFHE.sub_int_glwe (::mlir::concretelang::TFHE::SubGLWEIntOp)

Substracts an integer and a GLWE ciphertext

Traits: AlwaysSpeculatableImplTrait

Interfaces: ConditionallySpeculatable, NoMemoryEffect (MemoryEffectOpInterface)

Effects: MemoryEffects::Effect{}

Operands:

Operand
Description

a

integer

b

A GLWE ciphertext

Results:

Result
Description

«unnamed»

A GLWE ciphertext

TFHE.wop_pbs_glwe (::mlir::concretelang::TFHE::WopPBSGLWEOp)

Traits: AlwaysSpeculatableImplTrait

Interfaces: ConditionallySpeculatable, NoMemoryEffect (MemoryEffectOpInterface)

Effects: MemoryEffects::Effect{}

Attributes:

Attribute
MLIR Type
Description

ksk

::mlir::concretelang::TFHE::GLWEKeyswitchKeyAttr

An attribute representing keyswitch key.

bsk

::mlir::concretelang::TFHE::GLWEBootstrapKeyAttr

An attribute representing bootstrap key.

pksk

::mlir::concretelang::TFHE::GLWEPackingKeyswitchKeyAttr

An attribute representing Wop Pbs key.

crtDecomposition

::mlir::ArrayAttr

64-bit integer array attribute

cbsLevels

::mlir::IntegerAttr

32-bit signless integer attribute

cbsBaseLog

::mlir::IntegerAttr

32-bit signless integer attribute

Operands:

Operand
Description

ciphertexts

lookupTable

2D tensor of 64-bit signless integer values

Results:

Result
Description

result

TFHE.zero (::mlir::concretelang::TFHE::ZeroGLWEOp)

Returns a trivial encryption of 0

Traits: AlwaysSpeculatableImplTrait

Interfaces: ConditionallySpeculatable, NoMemoryEffect (MemoryEffectOpInterface)

Effects: MemoryEffects::Effect{}

Results:

Result
Description

out

A GLWE ciphertext

TFHE.zero_tensor (::mlir::concretelang::TFHE::ZeroTensorGLWEOp)

Returns a tensor containing trivial encryptions of 0

Traits: AlwaysSpeculatableImplTrait

Interfaces: ConditionallySpeculatable, NoMemoryEffect (MemoryEffectOpInterface)

Effects: MemoryEffects::Effect{}

Results:

Result
Description

tensor

Attribute definition

GLWEBootstrapKeyAttr

An attribute representing bootstrap key.

Syntax:

#TFHE.bsk<
  mlir::concretelang::TFHE::GLWESecretKey,   # inputKey
  mlir::concretelang::TFHE::GLWESecretKey,   # outputKey
  int,   # polySize
  int,   # glweDim
  int,   # levels
  int,   # baseLog
  int   # index
>

Parameters:

Parameter
C++ type
Description

inputKey

mlir::concretelang::TFHE::GLWESecretKey

outputKey

mlir::concretelang::TFHE::GLWESecretKey

polySize

int

glweDim

int

levels

int

baseLog

int

index

int

GLWEKeyswitchKeyAttr

An attribute representing keyswitch key.

Syntax:

#TFHE.ksk<
  mlir::concretelang::TFHE::GLWESecretKey,   # inputKey
  mlir::concretelang::TFHE::GLWESecretKey,   # outputKey
  int,   # levels
  int,   # baseLog
  int   # index
>

Parameters:

Parameter
C++ type
Description

inputKey

mlir::concretelang::TFHE::GLWESecretKey

outputKey

mlir::concretelang::TFHE::GLWESecretKey

levels

int

baseLog

int

index

int

GLWEPackingKeyswitchKeyAttr

An attribute representing Wop Pbs key.

Syntax:

#TFHE.pksk<
  mlir::concretelang::TFHE::GLWESecretKey,   # inputKey
  mlir::concretelang::TFHE::GLWESecretKey,   # outputKey
  int,   # outputPolySize
  int,   # inputLweDim
  int,   # glweDim
  int,   # levels
  int,   # baseLog
  int   # index
>

Parameters:

Parameter
C++ type
Description

inputKey

mlir::concretelang::TFHE::GLWESecretKey

outputKey

mlir::concretelang::TFHE::GLWESecretKey

outputPolySize

int

inputLweDim

int

glweDim

int

levels

int

baseLog

int

index

int

Type definition

GLWECipherTextType

A GLWE ciphertext

An GLWE cipher text

Parameters:

Parameter
C++ type
Description

key

mlir::concretelang::TFHE::GLWESecretKey

FHE Dialect

High Level Fully Homomorphic Encryption dialect A dialect for representation of high level operation on fully homomorphic ciphertext.

Operation definition

FHE.add_eint_int (::mlir::concretelang::FHE::AddEintIntOp)

Adds an encrypted integer and a clear integer

The clear integer must have at most one more bit than the encrypted integer and the result must have the same width and the same signedness as the encrypted integer.

Example:

// ok
"FHE.add_eint_int"(%a, %i) : (!FHE.eint<2>, i3) -> !FHE.eint<2>
"FHE.add_eint_int"(%a, %i) : (!FHE.esint<2>, i3) -> !FHE.esint<2>

// error
"FHE.add_eint_int"(%a, %i) : (!FHE.eint<2>, i4) -> !FHE.eint<2>
"FHE.add_eint_int"(%a, %i) : (!FHE.eint<2>, i3) -> !FHE.eint<3>
"FHE.add_eint_int"(%a, %i) : (!FHE.eint<2>, i3) -> !FHE.esint<2>

Traits: AlwaysSpeculatableImplTrait

Interfaces: Binary, BinaryEintInt, ConditionallySpeculatable, NoMemoryEffect (MemoryEffectOpInterface)

Effects: MemoryEffects::Effect{}

Operands:

Operand
Description

a

b

integer

Results:

Result
Description

«unnamed»

FHE.add_eint (::mlir::concretelang::FHE::AddEintOp)

Adds two encrypted integers

The encrypted integers and the result must have the same width and the same signedness.

Example:

// ok
"FHE.add_eint"(%a, %b): (!FHE.eint<2>, !FHE.eint<2>) -> (!FHE.eint<2>)
"FHE.add_eint"(%a, %b): (!FHE.esint<2>, !FHE.esint<2>) -> (!FHE.esint<2>)

// error
"FHE.add_eint"(%a, %b): (!FHE.eint<2>, !FHE.eint<3>) -> (!FHE.eint<2>)
"FHE.add_eint"(%a, %b): (!FHE.eint<2>, !FHE.eint<2>) -> (!FHE.eint<3>)
"FHE.add_eint"(%a, %b): (!FHE.eint<2>, !FHE.eint<2>) -> (!FHE.esint<2>)
"FHE.add_eint"(%a, %b): (!FHE.esint<2>, !FHE.eint<2>) -> (!FHE.eint<2>)

Traits: AlwaysSpeculatableImplTrait

Interfaces: BinaryEint, ConditionallySpeculatable, NoMemoryEffect (MemoryEffectOpInterface)

Effects: MemoryEffects::Effect{}

Operands:

Operand
Description

a

b

Results:

Result
Description

«unnamed»

FHE.apply_lookup_table (::mlir::concretelang::FHE::ApplyLookupTableEintOp)

Applies a clear lookup table to an encrypted integer

The width of the result can be different than the width of the operand. The lookup table must be a tensor of size 2^p where p is the width of the encrypted integer.

Example:

// ok
"FHE.apply_lookup_table"(%a, %lut): (!FHE.eint<2>, tensor<4xi64>) -> (!FHE.eint<2>)
"FHE.apply_lookup_table"(%a, %lut): (!FHE.eint<2>, tensor<4xi64>) -> (!FHE.eint<3>)
"FHE.apply_lookup_table"(%a, %lut): (!FHE.eint<3>, tensor<4xi64>) -> (!FHE.eint<2>)

// error
"FHE.apply_lookup_table"(%a, %lut): (!FHE.eint<2>, tensor<8xi64>) -> (!FHE.eint<2>)

Traits: AlwaysSpeculatableImplTrait

Interfaces: ConditionallySpeculatable, ConstantNoise, NoMemoryEffect (MemoryEffectOpInterface)

Effects: MemoryEffects::Effect{}

Operands:

Operand
Description

a

lut

tensor of integer values

Results:

Result
Description

«unnamed»

FHE.and (::mlir::concretelang::FHE::BoolAndOp)

Applies an AND gate to two encrypted boolean values

Example:

"FHE.and"(%a, %b): (!FHE.ebool, !FHE.ebool) -> (!FHE.ebool)

Traits: AlwaysSpeculatableImplTrait

Interfaces: ConditionallySpeculatable, NoMemoryEffect (MemoryEffectOpInterface)

Effects: MemoryEffects::Effect{}

Operands:

Operand
Description

left

An encrypted boolean

right

An encrypted boolean

Results:

Result
Description

«unnamed»

An encrypted boolean

FHE.nand (::mlir::concretelang::FHE::BoolNandOp)

Applies a NAND gate to two encrypted boolean values

Example:

"FHE.nand"(%a, %b): (!FHE.ebool, !FHE.ebool) -> (!FHE.ebool)

Traits: AlwaysSpeculatableImplTrait

Interfaces: ConditionallySpeculatable, NoMemoryEffect (MemoryEffectOpInterface)

Effects: MemoryEffects::Effect{}

Operands:

Operand
Description

left

An encrypted boolean

right

An encrypted boolean

Results:

Result
Description

«unnamed»

An encrypted boolean

FHE.not (::mlir::concretelang::FHE::BoolNotOp)

Applies a NOT gate to an encrypted boolean value

Example:

"FHE.not"(%a): (!FHE.ebool) -> (!FHE.ebool)

Traits: AlwaysSpeculatableImplTrait

Interfaces: ConditionallySpeculatable, NoMemoryEffect (MemoryEffectOpInterface), UnaryEint

Effects: MemoryEffects::Effect{}

Operands:

Operand
Description

value

An encrypted boolean

Results:

Result
Description

«unnamed»

An encrypted boolean

FHE.or (::mlir::concretelang::FHE::BoolOrOp)

Applies an OR gate to two encrypted boolean values

Example:

"FHE.or"(%a, %b): (!FHE.ebool, !FHE.ebool) -> (!FHE.ebool)

Traits: AlwaysSpeculatableImplTrait

Interfaces: ConditionallySpeculatable, NoMemoryEffect (MemoryEffectOpInterface)

Effects: MemoryEffects::Effect{}

Operands:

Operand
Description

left

An encrypted boolean

right

An encrypted boolean

Results:

Result
Description

«unnamed»

An encrypted boolean

FHE.xor (::mlir::concretelang::FHE::BoolXorOp)

Applies an XOR gate to two encrypted boolean values

Example:

"FHE.xor"(%a, %b): (!FHE.ebool, !FHE.ebool) -> (!FHE.ebool)

Traits: AlwaysSpeculatableImplTrait

Interfaces: ConditionallySpeculatable, NoMemoryEffect (MemoryEffectOpInterface)

Effects: MemoryEffects::Effect{}

Operands:

Operand
Description

left

An encrypted boolean

right

An encrypted boolean

Results:

Result
Description

«unnamed»

An encrypted boolean

FHE.from_bool (::mlir::concretelang::FHE::FromBoolOp)

Cast a boolean to an unsigned integer

Examples:

"FHE.from_bool"(%x) : (!FHE.ebool) -> !FHE.eint<1>
"FHE.from_bool"(%x) : (!FHE.ebool) -> !FHE.eint<2>
"FHE.from_bool"(%x) : (!FHE.ebool) -> !FHE.eint<4>

Traits: AlwaysSpeculatableImplTrait

Interfaces: ConditionallySpeculatable, NoMemoryEffect (MemoryEffectOpInterface), UnaryEint

Effects: MemoryEffects::Effect{}

Operands:

Operand
Description

input

An encrypted boolean

Results:

Result
Description

«unnamed»

An encrypted unsigned integer

FHE.gen_gate (::mlir::concretelang::FHE::GenGateOp)

Applies a truth table based on two boolean inputs

Truth table must be a tensor of four boolean values.

Example:

// ok
"FHE.gen_gate"(%a, %b, %ttable): (!FHE.ebool, !FHE.ebool, tensor<4xi64>) -> (!FHE.ebool)

// error
"FHE.gen_gate"(%a, %b, %ttable): (!FHE.ebool, !FHE.ebool, tensor<7xi64>) -> (!FHE.ebool)

Traits: AlwaysSpeculatableImplTrait

Interfaces: ConditionallySpeculatable, NoMemoryEffect (MemoryEffectOpInterface)

Effects: MemoryEffects::Effect{}

Operands:

Operand
Description

left

An encrypted boolean

right

An encrypted boolean

truth_table

tensor of integer values

Results:

Result
Description

«unnamed»

An encrypted boolean

FHE.max_eint (::mlir::concretelang::FHE::MaxEintOp)

Retrieve the maximum of two encrypted integers.

Retrieve the maximum of two encrypted integers using the formula, 'max(x, y) == max(x - y, 0) + y'. The input and output types should be the same.

If `x - y`` inside the max overflows or underflows, the behavior is undefined. To support the full range, you should increase the bit-width by 1 manually.

Example:

// ok
"FHE.max_eint"(%x, %y) : (!FHE.eint<2>, !FHE.eint<2>) -> !FHE.eint<2>
"FHE.max_eint"(%x, %y) : (!FHE.esint<3>, !FHE.esint<3>) -> !FHE.esint<3>

// error
"FHE.max_eint"(%x, %y) : (!FHE.eint<2>, !FHE.eint<3>) -> !FHE.eint<2>
"FHE.max_eint"(%x, %y) : (!FHE.eint<2>, !FHE.eint<2>) -> !FHE.esint<2>
"FHE.max_eint"(%x, %y) : (!FHE.esint<2>, !FHE.eint<2>) -> !FHE.eint<2>

Traits: AlwaysSpeculatableImplTrait

Interfaces: BinaryEint, ConditionallySpeculatable, NoMemoryEffect (MemoryEffectOpInterface)

Effects: MemoryEffects::Effect{}

Operands:

Operand
Description

x

y

Results:

Result
Description

«unnamed»

FHE.mul_eint_int (::mlir::concretelang::FHE::MulEintIntOp)

Multiply an encrypted integer with a clear integer

The clear integer must have one more bit than the encrypted integer and the result must have the same width and the same signedness as the encrypted integer.

Example:

// ok
"FHE.mul_eint_int"(%a, %i) : (!FHE.eint<2>, i3) -> !FHE.eint<2>
"FHE.mul_eint_int"(%a, %i) : (!FHE.esint<2>, i3) -> !FHE.esint<2>

// error
"FHE.mul_eint_int"(%a, %i) : (!FHE.eint<2>, i4) -> !FHE.eint<2>
"FHE.mul_eint_int"(%a, %i) : (!FHE.eint<2>, i3) -> !FHE.eint<3>
"FHE.mul_eint_int"(%a, %i) : (!FHE.eint<2>, i3) -> !FHE.esint<2>

Traits: AlwaysSpeculatableImplTrait

Interfaces: Binary, BinaryEintInt, ConditionallySpeculatable, NoMemoryEffect (MemoryEffectOpInterface)

Effects: MemoryEffects::Effect{}

Operands:

Operand
Description

a

b

integer

Results:

Result
Description

«unnamed»

FHE.mul_eint (::mlir::concretelang::FHE::MulEintOp)

Multiplies two encrypted integers

The encrypted integers and the result must have the same width and signedness. Also, due to the current implementation, one supplementary bit of width must be provided, in addition to the number of bits needed to encode the largest output value.

Example:

// ok
"FHE.mul_eint"(%a, %b): (!FHE.eint<2>, !FHE.eint<2>) -> (!FHE.eint<2>)
"FHE.mul_eint"(%a, %b): (!FHE.eint<3>, !FHE.eint<3>) -> (!FHE.eint<3>)
"FHE.mul_eint"(%a, %b): (!FHE.esint<3>, !FHE.esint<3>) -> (!FHE.esint<3>)

// error
"FHE.mul_eint"(%a, %b): (!FHE.eint<2>, !FHE.eint<3>) -> (!FHE.eint<2>)
"FHE.mul_eint"(%a, %b): (!FHE.eint<2>, !FHE.eint<2>) -> (!FHE.eint<3>)
"FHE.mul_eint"(%a, %b): (!FHE.eint<2>, !FHE.eint<2>) -> (!FHE.esint<2>)
"FHE.mul_eint"(%a, %b): (!FHE.esint<2>, !FHE.eint<2>) -> (!FHE.eint<2>)

Traits: AlwaysSpeculatableImplTrait

Interfaces: BinaryEint, ConditionallySpeculatable, NoMemoryEffect (MemoryEffectOpInterface)

Effects: MemoryEffects::Effect{}

Operands:

Operand
Description

rhs

lhs

Results:

Result
Description

«unnamed»

FHE.mux (::mlir::concretelang::FHE::MuxOp)

Multiplexer for two encrypted boolean inputs, based on an encrypted condition

Example:

"FHE.mux"(%cond, %c1, %c2): (!FHE.ebool, !FHE.ebool, !FHE.ebool) -> (!FHE.ebool)

Traits: AlwaysSpeculatableImplTrait

Interfaces: ConditionallySpeculatable, NoMemoryEffect (MemoryEffectOpInterface)

Effects: MemoryEffects::Effect{}

Operands:

Operand
Description

cond

An encrypted boolean

c1

An encrypted boolean

c2

An encrypted boolean

Results:

Result
Description

«unnamed»

An encrypted boolean

FHE.neg_eint (::mlir::concretelang::FHE::NegEintOp)

Negates an encrypted integer

The result must have the same width and the same signedness as the encrypted integer.

Example:

// ok
"FHE.neg_eint"(%a): (!FHE.eint<2>) -> (!FHE.eint<2>)
"FHE.neg_eint"(%a): (!FHE.esint<2>) -> (!FHE.esint<2>)

// error
"FHE.neg_eint"(%a): (!FHE.eint<2>) -> (!FHE.eint<3>)
"FHE.neg_eint"(%a): (!FHE.eint<2>) -> (!FHE.esint<2>)

Traits: AlwaysSpeculatableImplTrait

Interfaces: ConditionallySpeculatable, NoMemoryEffect (MemoryEffectOpInterface), UnaryEint

Effects: MemoryEffects::Effect{}

Operands:

Operand
Description

a

Results:

Result
Description

«unnamed»

FHE.round (::mlir::concretelang::FHE::RoundEintOp)

Rounds a ciphertext to a smaller precision.

Assuming a ciphertext whose message is implemented over p bits, this operation rounds it to fit to q bits with p>q.

Example:

 // ok
 "FHE.round"(%a): (!FHE.eint<6>) -> (!FHE.eint<5>)
 "FHE.round"(%a): (!FHE.eint<5>) -> (!FHE.eint<3>)
 "FHE.round"(%a): (!FHE.eint<3>) -> (!FHE.eint<2>)
 "FHE.round"(%a): (!FHE.esint<3>) -> (!FHE.esint<2>)

// error
 "FHE.round"(%a): (!FHE.eint<6>) -> (!FHE.eint<6>)
 "FHE.round"(%a): (!FHE.eint<4>) -> (!FHE.eint<5>)
 "FHE.round"(%a): (!FHE.eint<4>) -> (!FHE.esint<5>)

Traits: AlwaysSpeculatableImplTrait

Interfaces: ConditionallySpeculatable, NoMemoryEffect (MemoryEffectOpInterface), UnaryEint

Effects: MemoryEffects::Effect{}

Operands:

Operand
Description

input

Results:

Result
Description

«unnamed»

FHE.sub_eint_int (::mlir::concretelang::FHE::SubEintIntOp)

Subtract a clear integer from an encrypted integer

The clear integer must have one more bit than the encrypted integer and the result must have the same width and the same signedness as the encrypted integer.

Example:

// ok
"FHE.sub_eint_int"(%i, %a) : (!FHE.eint<2>, i3) -> !FHE.eint<2>
"FHE.sub_eint_int"(%i, %a) : (!FHE.esint<2>, i3) -> !FHE.esint<2>

// error
"FHE.sub_eint_int"(%i, %a) : (!FHE.eint<2>, i4) -> !FHE.eint<2>
"FHE.sub_eint_int"(%i, %a) : (!FHE.eint<2>, i3) -> !FHE.eint<3>
"FHE.sub_eint_int"(%i, %a) : (!FHE.eint<2>, i3) -> !FHE.esint<2>

Traits: AlwaysSpeculatableImplTrait

Interfaces: Binary, BinaryEintInt, ConditionallySpeculatable, NoMemoryEffect (MemoryEffectOpInterface)

Effects: MemoryEffects::Effect{}

Operands:

Operand
Description

a

b

integer

Results:

Result
Description

«unnamed»

FHE.sub_eint (::mlir::concretelang::FHE::SubEintOp)

Subtract an encrypted integer from an encrypted integer

The encrypted integers and the result must have the same width and the same signedness.

Example:

// ok
"FHE.sub_eint"(%a, %b): (!FHE.eint<2>, !FHE.eint<2>) -> (!FHE.eint<2>)
"FHE.sub_eint"(%a, %b): (!FHE.esint<2>, !FHE.esint<2>) -> (!FHE.esint<2>)

// error
"FHE.sub_eint"(%a, %b): (!FHE.eint<2>, !FHE.eint<3>) -> (!FHE.eint<2>)
"FHE.sub_eint"(%a, %b): (!FHE.eint<2>, !FHE.eint<2>) -> (!FHE.eint<3>)
"FHE.sub_eint"(%a, %b): (!FHE.eint<2>, !FHE.esint<2>) -> (!FHE.esint<2>)
"FHE.sub_eint"(%a, %b): (!FHE.eint<2>, !FHE.eint<2>) -> (!FHE.esint<2>)

Traits: AlwaysSpeculatableImplTrait

Interfaces: BinaryEint, ConditionallySpeculatable, NoMemoryEffect (MemoryEffectOpInterface)

Effects: MemoryEffects::Effect{}

Operands:

Operand
Description

a

b

Results:

Result
Description

«unnamed»

FHE.sub_int_eint (::mlir::concretelang::FHE::SubIntEintOp)

Subtract an encrypted integer from a clear integer

The clear integer must have one more bit than the encrypted integer and the result must have the same width and the same signedness as the encrypted integer.

Example:

// ok
"FHE.sub_int_eint"(%i, %a) : (i3, !FHE.eint<2>) -> !FHE.eint<2>
"FHE.sub_int_eint"(%i, %a) : (i3, !FHE.esint<2>) -> !FHE.esint<2>

// error
"FHE.sub_int_eint"(%i, %a) : (i4, !FHE.eint<2>) -> !FHE.eint<2>
"FHE.sub_int_eint"(%i, %a) : (i3, !FHE.eint<2>) -> !FHE.eint<3>
"FHE.sub_int_eint"(%i, %a) : (i3, !FHE.eint<2>) -> !FHE.esint<2>

Traits: AlwaysSpeculatableImplTrait

Interfaces: Binary, BinaryIntEint, ConditionallySpeculatable, NoMemoryEffect (MemoryEffectOpInterface)

Effects: MemoryEffects::Effect{}

Operands:

Operand
Description

a

integer

b

Results:

Result
Description

«unnamed»

FHE.to_bool (::mlir::concretelang::FHE::ToBoolOp)

Cast an unsigned integer to a boolean

The input must be of width one or two. Two being the current representation of an encrypted boolean, leaving one bit for the carry.

Examples:

// ok
"FHE.to_bool"(%x) : (!FHE.eint<1>) -> !FHE.ebool
"FHE.to_bool"(%x) : (!FHE.eint<2>) -> !FHE.ebool

// error
"FHE.to_bool"(%x) : (!FHE.eint<3>) -> !FHE.ebool

Traits: AlwaysSpeculatableImplTrait

Interfaces: ConditionallySpeculatable, NoMemoryEffect (MemoryEffectOpInterface), UnaryEint

Effects: MemoryEffects::Effect{}

Operands:

Operand
Description

input

An encrypted unsigned integer

Results:

Result
Description

«unnamed»

An encrypted boolean

FHE.to_signed (::mlir::concretelang::FHE::ToSignedOp)

Cast an unsigned integer to a signed one

The result must have the same width as the input.

The behavior is undefined on overflow/underflow.

Examples:

// ok
"FHE.to_signed"(%x) : (!FHE.eint<2>) -> !FHE.esint<2>

// error
"FHE.to_signed"(%x) : (!FHE.eint<2>) -> !FHE.esint<3>

Traits: AlwaysSpeculatableImplTrait

Interfaces: ConditionallySpeculatable, NoMemoryEffect (MemoryEffectOpInterface), UnaryEint

Effects: MemoryEffects::Effect{}

Operands:

Operand
Description

input

An encrypted unsigned integer

Results:

Result
Description

«unnamed»

An encrypted signed integer

FHE.to_unsigned (::mlir::concretelang::FHE::ToUnsignedOp)

Cast a signed integer to an unsigned one

The result must have the same width as the input.

The behavior is undefined on overflow/underflow.

Examples:

// ok
"FHE.to_unsigned"(%x) : (!FHE.esint<2>) -> !FHE.eint<2>

// error
"FHE.to_unsigned"(%x) : (!FHE.esint<2>) -> !FHE.eint<3>

Traits: AlwaysSpeculatableImplTrait

Interfaces: ConditionallySpeculatable, NoMemoryEffect (MemoryEffectOpInterface), UnaryEint

Effects: MemoryEffects::Effect{}

Operands:

Operand
Description

input

An encrypted signed integer

Results:

Result
Description

«unnamed»

An encrypted unsigned integer

FHE.zero (::mlir::concretelang::FHE::ZeroEintOp)

Returns a trivial encrypted integer of 0

Example:

"FHE.zero"() : () -> !FHE.eint<2>
"FHE.zero"() : () -> !FHE.esint<2>

Traits: AlwaysSpeculatableImplTrait

Interfaces: ConditionallySpeculatable, ConstantNoise, NoMemoryEffect (MemoryEffectOpInterface)

Effects: MemoryEffects::Effect{}

Results:

Result
Description

out

FHE.zero_tensor (::mlir::concretelang::FHE::ZeroTensorOp)

Creates a new tensor with all elements initialized to an encrypted zero.

Creates a new tensor with the shape specified in the result type and initializes its elements with an encrypted zero.

Example:

%tensor = "FHE.zero_tensor"() : () -> tensor<5x!FHE.eint<4>>
%tensor = "FHE.zero_tensor"() : () -> tensor<5x!FHE.esint<4>>

Traits: AlwaysSpeculatableImplTrait

Interfaces: ConditionallySpeculatable, ConstantNoise, NoMemoryEffect (MemoryEffectOpInterface)

Effects: MemoryEffects::Effect{}

Results:

Result
Description

tensor

Type definition

EncryptedBooleanType

An encrypted boolean

Syntax: !FHE.ebool

An encrypted boolean.

EncryptedSignedIntegerType

An encrypted signed integer

An encrypted signed integer with width bits to performs FHE Operations.

Examples:

!FHE.esint<7>
!FHE.esint<6>

Parameters:

Parameter
C++ type
Description

width

unsigned

EncryptedUnsignedIntegerType

An encrypted unsigned integer

An encrypted unsigned integer with width bits to performs FHE Operations.

Examples:

!FHE.eint<7>
!FHE.eint<6>

Parameters:

Parameter
C++ type
Description

width

unsigned

MLIR subproject
LLVM compiler infrastructure
dialects
documentation
source
documentation
source
documentation
source
documentation
source
documentation
source
documentation
source
documentation
source
MLIR's builtin Linalg Dialect
MLIR's SCF Dialect
MLIR's bufferization infrastructure

Security curves

  1. Data Acquisition

    • For a given value of (n,q=264,σ)(n, q = 2^{64}, \sigma)(n,q=264,σ) we obtain raw data from the Lattice Estimator, which ultimately leads to a security level λ\lambdaλ. All relevant attacks in the Lattice Estimator are considered.

    • Increase the value of σ\sigmaσ, until the tuple (n,q=264,σ)(n, q = 2^{64}, \sigma)(n,q=264,σ) satisfies the target level of security λtarget\lambda_{target}λtarget​.

    • Repeat for several values of nnn.

  2. Model Generation for λ=λtarget\lambda = \lambda_{target}λ=λtarget​.

    • At this point, we have several sets of points {(n,q=264,σ)}\{(n, q = 2^{64}, \sigma)\}{(n,q=264,σ)} satisfying the target level of security λtarget\lambda_{target}λtarget​. From here, we fit a model to this raw data (σ\sigmaσ as a function of nnn).

  3. Model Verification.

    • For each model, we perform a verification check to ensure that the values output from the function σ(n)\sigma(n)σ(n) provide the claimed level of security, λtarget\lambda_{target}λtarget​.

These models are then used as input for Concrete, to ensure that the parameter space explored by the compiler attains the required security level. Note that we consider the RC.BDGL16 lattice reduction cost model within the Lattice Estimator. Therefore, when computing our security estimates, we use the call LWE.estimate(params, red_cost_model = RC.BDGL16) on the input parameter set params.

Usage

To generate the raw data from the lattice estimator, use::

make generate-curves

by default, this script will generate parameter curves for {80, 112, 128, 192} bits of security, using log2(q)=64log_2(q) = 64log2​(q)=64.

To compare the current curves with the output of the lattice estimator, use:

make compare-curves

To generate the associated cpp and rust code, use::

make generate-code

further advanced options can be found inside the Makefile.

Example

sage: X = load("128.sobj")

entries are tuples of the form: (n,log2(q),log2(σ),λ)(n, log_2(q), log_2(\sigma), \lambda)(n,log2​(q),log2​(σ),λ). We can view individual entries via::

sage: X["128"][0]
(2366, 64.0, 4.0, 128.51)
sage: curves = load("verified_curves.sobj")

This object is a tuple containing the information required for the four security curves ({80, 112, 128, 192} bits of security). Looking at one of the entries:

sage: curves[2][:3]
(-0.026599462343105267, 2.981543184145991, 128)

Here we can see the linear model parameters (a=−0.026599462343105267,b=2.981543184145991)(a = -0.026599462343105267, b = 2.981543184145991)(a=−0.026599462343105267,b=2.981543184145991) along with the security level 128. This linear model can be used to generate secure parameters in the following way: for q=264q = 2^{64}q=264, if we have an LWE dimension of n=1536n = 1536n=1536, then the required noise size is:

σ=a∗n+b=−37.85\sigma = a * n + b = -37.85σ=a∗n+b=−37.85

This value corresponds to the logarithm of the relative error size. Using the parameter set (n,log(q),σ=264−37.85)(n, log(q), \sigma = 2^{64 - 37.85})(n,log(q),σ=264−37.85) in the Lattice Estimator confirms a 128-bit security level.

Adding a new backend

Context

There are client features (private and public key generation, encryption and decryption) and server features (homomorphic operations on ciphertexts using public keys).

Considering that

  • performance improvements are mostly beneficial for the server operations

  • the client needs to be portable for the variety of clients that may exist, we expect mostly server backend to be added to the compiler to improve performance (e.g. by using specialized hardware)

What is needed in the server backend

The server backend should expose C or C++ functions to do TFHE operations using the current ciphertext and key memory representation (or functions to change representation). A backend can support only a subset of the current TFHE operations.

The most common operations one would be expected to add are WP-PBS (standard TFHE programmable bootstrap), keyswitch and WoP (without padding bootsrap).

Linear operations may also be supported but may need more work since their introduction may interfere with other compilation passes. The following example does not include this.

Concrete-cuda example

We will detail how concrete-cuda is integrated in the compiler. Adding a new server feature backend (for non linear operations) should be quite similar. However, if you want to integrate a backend but it does not fit with this description, please open an issue or contact us to discuss the integration.

In compilers/concrete-compiler/Makefile

  • the variable CUDA_SUPPORT has been added and set to OFF (CUDA_SUPPORT?=OFF) by default

  • the variables CUDA_SUPPORT and CUDA_PATH are passed to CMake

-DCONCRETELANG_CUDA_SUPPORT=${CUDA_SUPPORT}
-DCUDAToolkit_ROOT=$(CUDA_PATH)

In compilers/concrete-compiler/compiler/include/concretelang/Runtime/context.h, the RuntimeContext struct is enriched with state to manage the backend ressources (behind a #ifdef CONCRETELANG_CUDA_SUPPORT).

In compilers/concrete-compiler/compiler/lib/Runtime/wrappers.cpp, the cuda backend server functions are added (behind a #ifdef CONCRETELANG_CUDA_SUPPORT)

The pass ConcreteToCAPI is modified to have a flag to insert calls to these new wrappers instead of the cpu ones (the code calling this pass is modified accordingly).

It may be possible to replace the cpu wrappers (with a compilation flag) instead of adding new ones to avoid having to change the pass.

In compilers/concrete-compiler/CMakeLists.txt a Section #Concrete Cuda Configuration has been added Other CMakeLists.txt have also been modified (or added) with if(CONCRETELANG_CUDA_SUPPORT) guard to handle header includes, linking...

Compiler backend

There are client and server features.

Client features are:

  • private (G)LWE key generation (currently random bits)

  • encryption of ciphertexts using a private key

  • public key generation from private keys for keyswitch, bootstrap or private packing

  • (de)serialization of ciphertexts and public keys (also needed server side)

Server features are homomorphic operations on ciphertexts:

  • linear operations (multisums with plain weights)

  • keyswitch

  • simple PBS

  • WoP PBS

There are currently 2 backends:

  • concrete-cpu which implements both client and server features targeting the CPU.

  • concrete-cuda which implements only server features targeting GPUs to accelerate homomorphic circuit evalutation.

The compiler uses concrete-cpu for the client and can use either concrete-cpu or concrete-cuda for the server.

Call FHE circuits from other languages

Calling from Rust

Demo

We will use a really simple example for a demo, but the same steps can be done for any other circuit. example.mlir will contain the MLIR below:

func.func @main(%arg0: tensor<4x4x!FHE.eint<6>>, %arg1: tensor<4x2xi7>) -> tensor<4x2x!FHE.eint<6>> {
   %0 = "FHELinalg.matmul_eint_int"(%arg0, %arg1): (tensor<4x4x!FHE.eint<6>>, tensor<4x2xi7>) -> (tensor<4x2x!FHE.eint<6>>)
   %tlu = arith.constant dense<[40, 13, 20, 62, 47, 41, 46, 30, 59, 58, 17, 4, 34, 44, 49, 5, 10, 63, 18, 21, 33, 45, 7, 14, 24, 53, 56, 3, 22, 29, 1, 39, 48, 32, 38, 28, 15, 12, 52, 35, 42, 11, 6, 43, 0, 16, 27, 9, 31, 51, 36, 37, 55, 57, 54, 2, 8, 25, 50, 23, 61, 60, 26, 19]> : tensor<64xi64>
   %result = "FHELinalg.apply_lookup_table"(%0, %tlu): (tensor<4x2x!FHE.eint<6>>, tensor<64xi64>) -> (tensor<4x2x!FHE.eint<6>>)
   return %result: tensor<4x2x!FHE.eint<6>>
}

You can use the concretecompiler binary to compile this MLIR program. Same can be done with concrete-python, as we only need the compilation artifacts at the end.

$ concretecompiler --action=compile -o rust-demo example.mlir

You should be able to see artifacts listed in the rust-demo directory

$ ls rust-demo/
client_parameters.concrete.params.json  compilation_feedback.json  fhecircuit-client.h  sharedlib.so  staticlib.a

Now we want to use the Rust bindings in order to call the compiled circuit.

use concrete_compiler::compiler::{KeySet, LambdaArgument, LibrarySupport};

The main struct to manage compilation artifacts is LibrarySypport. You will have to create one with the path you used during compilation, then load the result of the compilation

let lib_support = LibrarySupport::new(
        "/path/to/your/rust-demo/",
        None,
    )
    .unwrap();
let compilation_result = lib_support.load_compilation_result().unwrap();

Using the compilation result, you can load the server lambda (the entrypoint to the executable compiled circuit) as well as the client parameters (containing crypto parameters)

let server_lambda = lib_support.load_server_lambda(&compilation_result).unwrap();
let client_params = lib_support.load_client_parameters(&compilation_result).unwrap();

The client parameters will serve the client to generate keys and encrypt arguments for the circuit

let key_set = KeySet::new(&client_params, None, None, None).unwrap();
let args = [
        LambdaArgument::from_tensor_u8(&[1, 2, 3, 4, 1, 2, 3, 4, 1, 2, 3, 4, 1, 2, 3, 4], &[4, 4])
            .unwrap(),
        LambdaArgument::from_tensor_u8(&[1, 2, 1, 2, 1, 2, 1, 2], &[4, 2]).unwrap(),
    ];
let encrypted_args = key_set.encrypt_args(&args).unwrap();

Only evaluation keys are required for the execution of the circuit. You can execute the circuit on the encrypted arguments via server_lambda_call

let eval_keys = key_set.evaluation_keys().unwrap();
let encrypted_result = lib_support
        .server_lambda_call(&server_lambda, &encrypted_args, &eval_keys)
        .unwrap()

At this point you have the encrypted result and can decrypt it using the keyset which holds the secret key

let result_arg = key_set.decrypt_result(&encrypted_result).unwrap();
println!("result tensor dims: {:?}", result_arg.dims().unwrap());
println!("result tensor data: {:?}", result_arg.data().unwrap());

Automatic Crypto Parameters choice

concrete-optimizer is a tool that selects appropriate cryptographic parameters for a given fully homomorphic encryption (FHE) computation. These parameters have an impact on the security, correctness, and efficiency of the computation.

The cryptographic parameters are degrees of freedom in the FHE algorithms (bootstrapping, keyswitching, etc.) that need to be fixed. The search space for possible crypto-parameters is finite but extremely large. The role of the optimizer is to quickly find the most efficient crypto-parameters possible while guaranteeing security and correctness.

Security, Correctness, and Efficiency

Security

The security level is chosen by the user. We typically operate at a fixed security level, such as 128 bits, to ensure that there is never a trade-off between security and efficiency. This constraint imposes a minimum amount of noise in all ciphertexts.

Correctness

Correctness decreases as the level of noise increases. Noise accumulates during homomorphic computation until it is actively reduced via bootstrapping. Too much noise can lead to the result of a computation being inaccurate or completely incorrect.

Before optimization, we compute a noise bound that guarantees a given error level (under the assumption that noise growth is correctly managed via bootstrapping). The noise growth depends on a critical quantity: the 2-norm of any dot product (or equivalent) present in the calculus. This 2-norm changes the scale of the noise, so we must reduce it sufficiently for the next dot product operation whenever we reduce the noise.

The user can control error probability in two ways: via the PBS error probability and the global error probability.

The PBS error probability controls correctness locally (i.e., represents the error probability of a single PBS operation), while the global error probability focuses on the overall computation result (i.e., represents the error probability of the entire computation). These probabilities are related, and choosing which one to use may depend on the specific use case.

Efficiency

Efficiency decreases as more precision is required, e.g. 7-bits versus 8-bits. The larger the 2-norm is, the bigger the noise will be after a dot product. To remain below the noise bound, we must ensure that the inputs to the dot product have a sufficiently small noise level. The smaller this noise is, the slower the previous bootstrapping will be. Therefore, the larger the 2norm is, the slower the computation will be.

How are the parameters optimized

The optimization prioritizes security and correctness. This means that the security level (or the probability of correctness) could, in practice, be a bit higher than the level which is requested by the user.

In the simplest case, the optimizer performs an exhaustive search in the full parameter space and selects the best solution. While the space to explore is huge, exact lower bound cuts are used to avoid exploring regions which are guaranteed to not contain an optimal point. This makes the process both fast and exhaustive. This case is called mono-parameter, where all parameters are shared by the whole computation graph.

In more complex cases, the optimizer iteratively performs an exhaustive search, with lower bound cuts in a wide subspace of the full parameter space, until it converges to a locally optimal solution. Since the wide subspace is large and multi-dimensional, it should not be trapped in a poor locally optimal solution. The more complex case is called multi-parameter, where different calculus operations have tailored parameters.

How can I determine, understand, and explore crypto-parameters

Citing

If you use this tool in your work, please cite:

Bergerat, Loris and Boudi, Anas and Bourgerie, Quentin and Chillotti, Ilaria and Ligier, Damien and Orfila Jean-Baptiste and Tap, Samuel, Parameter Optimization and Larger Precision for (T)FHE, Journal of Cryptology, 2023, Volume 36

To select secure cryptographic parameters for usage in Concrete, we utilize the . In particular, we use the following workflow:

this will compare the four curves generated above against the output of the version of the lattice estimator found in the .

To look at the raw data gathered in step 1., we can look in the . These objects can be loaded in the following way using SageMath:

To view the interpolated curves we load the verified_curves.sobj object inside the .

The concrete backends are implementations of the cryptographic primitives of the Zama variant of .

The concrete backends are implementations of the cryptographic primitives of the Zama variant of . The compiler emits code which combines call into these backends to perform more complex homomorphic operations.

After doing a compilation, we endup with a couple of artifacts, including crypto parameters and a binary file containing the executable circuit. In order to be able to encrypt and run the circuit properly, we need to know how to interpret these artifacts, and there are a couple of utility functions to load them. These utility functions can be accessed through a variety of languages, including Python, Cpp, and Rust. (built on top of the ) can be a good example for someone who wants to build bindings for another language.

bindgen is used to generate Rust FFI bindings to the CAPI are built on top of the CAPI in order to provide a safer, and more Rusty API. Although you can use bindgen (as we did to build the Rust bindings) to generate the Rust FFI from the CAPI and use it as is, we will here show how to use the Rust API that is built on top of that, as it's easier to use.

There is also a couple of tests in that can show how to both compile and run a circuit between a client and server using serialization.

The computation is guaranteed to be secure with the given level of security (see for details) which is typically 128 bits. The correctness of the computation is guaranteed up to a given failure probability. A surrogate of the execution time is minimized which allows for efficient FHE computation.

An independent public research tool, the , is used to estimate the security level. The lattice estimator is maintained by FHE experts. For a given set of crypto-parameters, this tool considers all possible attacks and returns a security level.

For each security level, a parameter curve of the appropriate minimal error level is pre-computed using the lattice estimator, and is used as an input to the optimizer. Learn more about the parameter curves .

One can have a look at for each security level (but for a given correctness). This provides insight between the calcululs content (i.e. maximum precision, maximum dot 2-norm, etc.,) and the cost.

Then one can manually explore crypto-parameters space using a .

A pre-print is available as Cryptology ePrint Archive

Lattice-Estimator
third_party folder
sage-object folder
sage-object folder
TFHE
TFHE
The Rust bindings
CAPI
The Rust bindings
compiler.rs
here
lattice estimator
here
reference crypto-parameters
CLI tool
Paper 2022/704