concrete.ml.quantization.quantizers
Quantization utilities for a numpy array/tensor.
STABILITY_CONST
fill_from_kwargs
Fill a parameter set structure from kwargs parameters.
Args:
obj
: an object of type klass, if None the object is created if any of the type's members appear in the kwargs
klass
: the type of object to fill
kwargs
: parameter names and values to fill into an instance of the klass type
Returns:
obj
: an object of type klass
kwargs
: remaining parameter names and values that were not filled into obj
Raises:
TypeError
: if the types of the parameters in kwargs could not be converted to the corresponding types of members of klass
QuantizationOptions
Options for quantization.
Determines the number of bits for quantization and the method of quantization of the values. Signed quantization allows negative quantized values. Symmetric quantization assumes the float values are distributed symmetrically around x=0 and assigns signed values around 0 to the float values. QAT (quantization aware training) quantization assumes the values are already quantized, taking a discrete set of values, and assigns these values to integers, computing only the scale.
__init__
property quant_options
Get a copy of the quantization parameters.
Returns:
UniformQuantizationParameters
: a copy of the current quantization parameters
copy_opts
Copy the options from a different structure.
Args:
opts
(QuantizationOptions): structure to copy parameters from.
MinMaxQuantizationStats
Calibration set statistics.
This class stores the statistics for the calibration set or for a calibration data batch. Currently we only store min/max to determine the quantization range. The min/max are computed from the calibration set.
property quant_stats
Get a copy of the calibration set statistics.
Returns:
MinMaxQuantizationStats
: a copy of the current quantization stats
compute_quantization_stats
Compute the calibration set quantization statistics.
Args:
values
(numpy.ndarray): Calibration set on which to compute statistics.
copy_stats
Copy the statistics from a different structure.
Args:
stats
(MinMaxQuantizationStats): structure to copy statistics from.
UniformQuantizationParameters
Quantization parameters for uniform quantization.
This class stores the parameters used for quantizing real values to discrete integer values. The parameters are computed from quantization options and quantization statistics.
property quant_params
Get a copy of the quantization parameters.
Returns:
UniformQuantizationParameters
: a copy of the current quantization parameters
compute_quantization_parameters
Compute the quantization parameters.
Args:
options
(QuantizationOptions): quantization options set
stats
(MinMaxQuantizationStats): calibrated statistics for quantization
copy_params
Copy the parameters from a different structure.
Args:
params
(UniformQuantizationParameters): parameter structure to copy
UniformQuantizer
Uniform quantizer.
Contains all information necessary for uniform quantization and provides quantization/dequantization functionality on numpy arrays.
Args:
options
(QuantizationOptions): Quantization options set
stats
(Optional[MinMaxQuantizationStats]): Quantization batch statistics set
params
(Optional[UniformQuantizationParameters]): Quantization parameters set (scale, zero-point)
__init__
property quant_options
Get a copy of the quantization parameters.
Returns:
UniformQuantizationParameters
: a copy of the current quantization parameters
property quant_params
Get a copy of the quantization parameters.
Returns:
UniformQuantizationParameters
: a copy of the current quantization parameters
property quant_stats
Get a copy of the calibration set statistics.
Returns:
MinMaxQuantizationStats
: a copy of the current quantization stats
compute_quantization_parameters
Compute the quantization parameters.
Args:
options
(QuantizationOptions): quantization options set
stats
(MinMaxQuantizationStats): calibrated statistics for quantization
compute_quantization_stats
Compute the calibration set quantization statistics.
Args:
values
(numpy.ndarray): Calibration set on which to compute statistics.
copy_opts
Copy the options from a different structure.
Args:
opts
(QuantizationOptions): structure to copy parameters from.
copy_params
Copy the parameters from a different structure.
Args:
params
(UniformQuantizationParameters): parameter structure to copy
copy_stats
Copy the statistics from a different structure.
Args:
stats
(MinMaxQuantizationStats): structure to copy statistics from.
dequant
Dequantize values.
Args:
qvalues
(numpy.ndarray): integer values to dequantize
Returns:
numpy.ndarray
: Dequantized float values.
quant
Quantize values.
Args:
values
(numpy.ndarray): float values to quantize
Returns:
numpy.ndarray
: Integer quantized values.
QuantizedArray
Abstraction of quantized array.
Contains float values and their quantized integer counter-parts. Quantization is performed by the quantizer member object. Float and int values are kept in sync. Having both types of values is useful since quantized operators in Concrete ML graphs might need one or the other depending on how the operator works (in float or in int). Moreover, when the encrypted function needs to return a value, it must return integer values.
See https://arxiv.org/abs/1712.05877.
Args:
values
(numpy.ndarray): Values to be quantized.
n_bits
(int): The number of bits to use for quantization.
value_is_float
(bool, optional): Whether the passed values are real (float) values or not. If False, the values will be quantized according to the passed scale and zero_point. Defaults to True.
options
(QuantizationOptions): Quantization options set
stats
(Optional[MinMaxQuantizationStats]): Quantization batch statistics set
params
(Optional[UniformQuantizationParameters]): Quantization parameters set (scale, zero-point)
kwargs
: Any member of the options, stats, params sets as a key-value pair. The parameter sets need to be completely parametrized if their members appear in kwargs.
__init__
dequant
Dequantize self.qvalues.
Returns:
numpy.ndarray
: Dequantized values.
quant
Quantize self.values.
Returns:
numpy.ndarray
: Quantized values.
update_quantized_values
Update qvalues to get their corresponding values using the related quantized parameters.
Args:
qvalues
(numpy.ndarray): Values to replace self.qvalues
Returns:
values
(numpy.ndarray): Corresponding values
update_values
Update values to get their corresponding qvalues using the related quantized parameters.
Args:
values
(numpy.ndarray): Values to replace self.values
Returns:
qvalues
(numpy.ndarray): Corresponding qvalues